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Abstract. The integration of artificial intelligence and satellite 
remote sensing provides an innovative approach to sustainable 

ocean management. This study demonstrates how oceanographic 

sensors and AI‑driven predictive models enhance the monitoring 
and governance of Marine Protected Areas (MPAs) and 

sustainable fishing zones. Multivariate datasets are used to map 

areas of high primary productivity in the Gulf of Mexico, 
employing QGIS and ArcGIS for spatial analysis. Long 

Short‑Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

neural networks trained on historical time series forecast 
ecological risks, including hypoxic zones and harmful algal 

blooms. Unsupervised clustering and dimensionality reduction 

identify anomalies relative to natural oceanographic patterns, 
supporting more adaptive and precautionary ocean governance. 

The integration of artificial intelligence and satellite remote 

sensing provides an innovative approach to sustainable ocean 
management. This study demonstrates how oceanographic sensors 

and AI‑driven predictive models enhance the monitoring and 

governance of Marine Protected Areas (MPAs) and sustainable 
fishing zones. Multivariate datasets are used to map areas of high 

primary productivity in the Gulf of Mexico, employing QGIS and 

ArcGIS for spatial analysis. Long Short‑Term Memory (LSTM) 
and Gated Recurrent Unit (GRU) neural networks trained on 

historical time series forecast ecological risks, including hypoxic 

zones and harmful algal blooms. Unsupervised clustering and 
dimensionality reduction identify anomalies relative to natural 

oceanographic patterns, supporting more adaptive and 

precautionary ocean governance. 
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1 Introduction 
 

Authors should submit their paper electronically, in either WORD (.doc file). Manuscripts should not exceed 20 pages, 

including figures, tables, references and appendices. 

 

 

The current condition of the world’s oceans is of significant concern owing to the multitude of global environmental challenges 

they face. Oceans constitute a critical component of the Earth’s system, delivering essential ecosystem services that include 

climate regulation, oxygen generation, and the sequestration and redistribution of carbon. Nevertheless, they are increasingly 

subject to a range of anthropogenic and natural pressures that are detrimentally impacting their overall health and resilience: 
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1. Pollution: Marine pollution from plastics, pesticides and other chemical contaminants constitutes a major 

environmental threat. Plastic debris poses significant risks to marine fauna, as it is frequently ingested and 

bioaccumulates along trophic chains, leading to toxic effects and increased mortality rates. 

2. Climate change: Global warming has accelerated sea-level rise, altered oceanographic conditions and amplifying 

extreme phenomena such as storm surges and typhoons. Disruption of the marine carbon cycle has further elevated 

dissolved carbon dioxide (CO₂) concentrations, driven acidification and reducing the capacity of seawater to support 

marine life. 

3. Overfishing: The overexploitation of marine resources has resulted in critical population declines, attributable to 

indiscriminate harvesting and pressure on key species. These practices destabilise ecosystems and entail substantial 

socio-economic repercussions. 

4. Coastal flooding: Sea-level rise associated with climate change is intensifying coastal flooding, degrading habitats and 

displacing human populations, thereby compounding ecological and humanitarian challenges. 

 

To address these challenges, the use of smart tools to enable more efficient and effective ocean management is essential. 

Artificial Intelligence (AI), in conjunction with satellite data, plays a pivotal role in this endeavour: 

 

• Continuous monitoring: AI-powered sensors and systems enable round-the-clock monitoring of marine health, 

providing detailed information on pollution levels, water temperature, oxygen concentrations and other critical 

parameters. 

• Event prediction: By analysing historical trends and real-time data, AI supports the forecasting of extreme events such 

as tsunamis, storm surges and sea-ice collapses, facilitating faster and more effective responses. 

• Optimising fishing strategies: AI-driven systems can process data on the distribution and movement of marine species, 

supporting both artisanal and commercial fishers in maximising sustainable yields while minimising the risk of 

overfishing. 

• Protected area management: Satellite imagery enables the detection of areas vulnerable to pollution or human-induced 

degradation, supporting the designation of marine reserves where harmful practices can be regulated. 

 

The oceans face significant challenges that require comprehensive management strategies and the innovative application of 

technologies such as Artificial Intelligence (AI) and satellite data to monitor, analyse and respond effectively to marine crises. 

These five indicators are standardised metrics established by the climate science community, particularly by the 

Intergovernmental Panel on Climate Change (IPCC) and agencies such as NOAA and NASA: 

 

1. Atmospheric concentration of CO₂: Measured continuously since 1958 at the Mauna Loa Observatory by Charles 

David Keeling, this indicator reflects cumulative warming and the effectiveness of mitigation policies (Keeling et al., 

1976). 

2. Global temperature anomalies: Calculated using datasets such as GISS (NASA) and HadCRUT (Met Office Hadley 

Centre), this metric monitors variations in global land and ocean mean temperatures relative to a reference baseline 

period (Hansen et al., 2010). 

3. Mean sea level: Derived from tide-gauge records and satellite altimetry since 1993, this indicator reveals the 

contribution of polar ice melt and thermal expansion resulting from global warming (Church & White, 2011). 

4. Frequency and intensity of extreme events: As analysed in IPCC reports (2021), this metric evaluates changes in 

hurricanes, heatwaves and extreme precipitation, providing insight into the severity of short-term climate impacts. 

5. Ocean acidification: As documented by Doney et al. (2009), this indicator measures reductions in marine pH due to 

CO₂ absorption and its consequences for coral reefs and broader marine ecosystems. 

 

Satellite-Based Data Sources for Monitoring Ocean Health 

 

The Copernicus, Sentinel, MODIS and SeaWiFS satellite programmes are vital components in the global effort to observe and 

monitor our planet from space. Below is a brief overview of each programme: 

 

• Copernicus Programme: The Copernicus Programme is a European Earth observation initiative that provides global 

data on environmental, climatic and terrestrial conditions. It offers near real-time information on air pollution, forest 

fires, ocean monitoring, weather forecasting and more. The programme comprises a series of coordinated satellites 

delivering continuous and detailed observations. Within this framework, the Sentinel satellite series—particularly 

Sentinel‑3—carries instruments such as the Ocean and Land Colour Instrument (OLCI) and the Sea and Land Surface 

Temperature Radiometer (SLSTR), providing near-daily global coverage of ocean colour and surface temperatures. 
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• Sentinel Programme: The Sentinel Programme is a collaborative initiative between the European Space Agency (ESA) 

and the United States National Oceanic and Atmospheric Administration (NOAA). It includes several satellite series, 

such as Sentinel‑1, which monitors land-surface changes and sea-ice dynamics, and Sentinel‑2, which captures high-

resolution Earth imagery to support environmental management and agricultural monitoring. Sentinel data are freely 

available and provide high spatial resolution, with imagery reaching up to 10 metres. 

• MODIS (Moderate Resolution Imaging Spectroradiometer): MODIS is a scientific instrument aboard several satellites, 

most notably NASA’s Terra and Aqua. It captures spectral images across multiple bands, enabling the study of diverse 

terrestrial and atmospheric phenomena. MODIS data are widely used to monitor forest fires, air pollution, ice and snow 

cover, and for climate studies. It provides high temporal resolution (every one to two days) and spatial resolution 

(typically up to 500 metres). MODIS sensors on Aqua and Terra also capture multispectral images to derive sea surface 

temperature (SST) and chlorophyll concentrations in coastal and open-ocean waters. 

• SeaWiFS (Sea‑Viewing Wide Field‑of‑View Sensor): SeaWiFS was a NASA-operated satellite launched in October 

1997 and placed in science mode in April 1998. It became renowned for providing data on oceanic primary 

productivity, delivering critical insights into biogeochemical cycles and marine ecosystem dynamics. Two major data 

versions were released: Version 2 (SeaWiFS‑2) in August 2017 and Version 3, launched under the Copernicus 

Programme. Between 1997 and 2010, SeaWiFS generated essential ocean-colour imagery, mapping global 

chlorophyll‑a concentrations and supporting long-term research in ocean biology and biogeochemistry. 

 

The following outlines how each monitored variable contributes to global understanding of the marine environment: 

 

• Chlorophyll a: Ocean colour sensors—such as OLCI, SeaWiFS and MODIS—estimate chlorophyll concentrations, 

which indicate the abundance of phytoplankton. This is essential for global monitoring of primary production and algal 

blooms, offering insights into ecological dynamics and environmental impacts. 

• Sea Surface Temperature (SST): Instruments such as SLSTR (on Sentinel 3) and MODIS provide SST measurements 

with an accuracy of up to 0.3 K. These data are critical for climate research and for advancing our understanding of 

marine ecological processes. 

• Ocean acidification: Satellite data alone cannot directly measure ocean pH. However, initiatives such as OceanSODA 

MDB integrate satellite derived variables—such as SST and chlorophyll—with in situ carbonate chemistry 

measurements to assess long term acidification trends. 

• Floating plastics: Emerging methods aim to detect macroscopic plastic debris by combining ocean colour data with 

high resolution satellite imagery. These remote observations are validated through in situ trawl surveys, improving the 

accuracy of plastic pollution assessments. 

 

The Copernicus Programme complements its suite of satellite products with an extensive database of in situ observations 

collected from divers, research vessels, profiling floats (such as Argo), dredgers and aircraft. These observations are essential 

for the calibration and validation of satellite derived data. 

 

The Copernicus Institutional Thematic Assembly Centre (INS TAC) compiles and quality controls essential ocean variable 

datasets that underpin operational oceanography. Its outputs are integrated with the Global Ocean Observing System (GOOS) 

and EMODnet networks, ensuring consistency between satellite and in situ measurements. 

 

In real time forecasting systems, satellites provide broad spatial coverage, while in situ sensors deliver precise point based 

measurements. Both data sources are assimilated into ocean models to improve forecasting accuracy at global, regional and 

coastal scales. 

 

Advanced approaches now fuse remote sensing and in situ data using machine learning frameworks—such as CLOINet—

producing refined three dimensional reconstructions of key ocean variables, including temperature and salinity. 

 

  

2 Applied AI Modelling Approaches 
 

The utilisation of supervised learning algorithms for the analysis of satellite data represents a valuable avenue for advancing 

sustainable ocean management. By integrating sophisticated machine learning techniques with satellite-based observations, it is 

possible to develop predictive models that support informed decision-making in the management of marine ecosystems and 

resources. 
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Supervised algorithms enhance our understanding of marine connectivity, which is essential for ecological conservation efforts. 

For instance, integrating sea surface temperature data with machine learning techniques has proven instrumental in identifying 

critical marine areas and their dynamic properties, thereby facilitating the designation and management of Marine Protected 

Areas (MPAs) (Novi et al., 2021). The importance of machine learning is also exemplified by the Global Fishing Watch 

initiative, which transforms satellite data into actionable insights to combat illegal fishing activities, supporting sustainable 

fisheries management (Paolo et al., 2024). This constitutes a crucial mechanism for protecting biodiversity and strengthening 

marine governance frameworks. 

 

Moreover, retrieving ocean subsurface temperatures from surface data using neural networks exemplifies how supervised 

learning can reconstruct thermal structures that are critical for understanding climate dynamics. Studies have demonstrated the 

application of these methods to predict subsurface conditions based on satellite-derived parameters such as sea surface 

temperature (SST) and salinity (Qi et al., 2022; Cheng et al., 2021). Integrating these predictive capabilities into oceanographic 

models enhances scientific understanding of ocean biogeochemistry and the carbon cycle, both vital for assessing the impacts of 

climate change (Li et al., 2019). 

 

The potential for long-term predictions of ocean conditions and carbon uptake is another promising area for machine learning 

applications. Several research efforts have emphasised the use of decadal-scale forecasts to manage living marine resources 

effectively, including adapting to challenges such as ocean acidification (Wang et al., 2022).  

 

In specific studies, machine learning has also been applied to technical tasks, such as correcting biases in satellite-derived 

salinity measurements and assimilating these corrected data into ocean models, improving predictive accuracy and operational 

efficiency (Zavala‐Romero et al., 2024). This integration demonstrates the multifaceted approach required for sustainable ocean 

management, where algorithms function as decision-support systems in operational contexts. 

 

The deployment of convolutional neural networks (CNNs) has demonstrated transformative potential in data assimilation 

processes for operational oceanography. The ability of CNNs to process and analyse extensive datasets from multiple satellite 

sources provides a nuanced understanding of sea surface anomalies, which are critical for informing marine resource 

management practices (Trossman & Bayler, 2022; Prochaska, 2021). 

 

Monitoring the oceans is a crucial task in environmental science, climatology and marine resource management. In this context, 

supervised machine learning algorithms are emerging as effective tools for analysing and predicting complex oceanic 

phenomena. The following (Table 1) provides a summary of how these techniques are being applied to ocean monitoring, based 

on various recent publications. 

 

Table 1. Comparative Table of Supervised Algorithms. 

Algorithm             Type Advantages   Disadvantages   Typical applications 

Linear 

regression     

Regression Highly 

interpretable, 

fast     

Only linear 

relationships, 

sensitive to 

outliers     

Simple trends, 

continuous predictions 

Logistic 

regression     

Classification Interpretable 

probabilities, 

well calibrated     

Does not 

capture complex 

non-linearities     

Binary diagnosis, 

medical classification 

 

k-NN (k-

Nearest 

Neighbours)     

Classification/Regression     Intuitive, non-

parametric     

Slow with large 

data sets, 

sensitive to 

noise and scale     

Recommendation 

systems, pattern 

detection 

 

SVM (Support 

Vector 

Machines) 

Classification/Regression     Effective in 

high 

dimensions, 

customisable 

kernels     

Requires 

hyperparameter 

tuning, costly 

with large 

datasets     

Bioinformatics, text, 

complex classification 

Decision trees     Classification/Regression     Highly 

interpretable, 

Overfitting, 

high variance     

Segmentation, logical 

decisions 
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no 

normalisation 

required     

 

Random 

Forest     

Ensemble Robust, 

reduces 

variance, does 

not require 

much tuning     

Less 

interpretable, 

more 

computationally 

expensive     

Tabular data, robust 

classification/regression 

Boosting 

(XGBoost, 

LightGBM)     

Ensemble Very high 

accuracy, 

handles bias 

and variance     

Intensive 

tuning, 

overfitting if not 

regulated     

ML competitions, 

complex structured data 

Naive Bayes Classification Fast, scalable, 

good baseline 

Assumes 

independence of 

variables, low 

accuracy if not 

met 

Text classification, 

spam 

 

PLS-R Regression Good for data 

with 

collinearity, 

reduces 

dimension 

Less 

interpretable, 

sensitive to 

noise 

Chemometrics, 

bioinformatics 

 

MLP (Multi-

Layer 

Perceptron) 

Deep Learning Captures 

complex non-

linear 

relationships 

Black box, 

requires large 

amounts of data 

and tuning 

Vision, time series, 

tabular classification 

 

LSTM (Long 

Short-Term 

Memory) 

Deep Learning / Time 

series 

Captures long 

dependencies 

over time, 

handles 

sequential data 

Expensive 

training, 

requires a lot of 

adjustment 

Multivariate time series, 

weather forecasting, 

oceans, language 

 

GRU (Gated 

Recurrent 

Unit) 

Deep Learning / Time 

series 

Similar to 

LSTM but 

more efficient, 

fewer 

parameters 

Lower capacity 

than LSTM for 

long 

dependencies 

Sequences, voice, IoT 

sensors 

 

TCN 

(Temporal 

Convolutional 

Network) 

Deep Learning / Time 

series 

Processes 

sequences in 

parallel, faster 

training than 

RNNs Requires 

greater 

architectural 

design 

Time prediction, 

financial series, 

anomalies 

 

Transformers 

(Time Series) 

Deep Learning / 

Sequences 

Handles global 

relationships 

in long 

sequences, 

total 

parallelisation 

Very expensive, 

requires large 

datasets 

Multivariate time 

prediction, text, 

weather, satellite 

 

 

 

 

The use of deep learning algorithms, such as convolutional neural networks, has proven effective for ocean data inference and 

subgrid parametrisation (Bolton & Zanna, 2019). These methodologies not only capitalise on large oceanographic datasets but 

also enable robust inference under adverse conditions. For instance, the work of Fasnacht et al. (2022) demonstrates that it is 

possible to estimate ocean colour information from hyperspectral measurements, even in the presence of clouds and aerosols. 

This suggests that machine learning can overcome certain limitations inherent in traditional radiative transfer modelling 

methods. 
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Supervised algorithms applied to the estimation of ocean mixed-layer depth have shown how satellite and in situ observations 

can be integrated to provide more accurate estimates of these phenomena (Foster et al., 2021). 

Another emerging field is the detection of plastics and other marine pollutants. Jamali and Mahdianpari (2021) present a cloud-

based framework that employs multispectral satellite imagery and generative adversarial networks for marine plastic 

monitoring. This method represents a significant advancement in waste management and the protection of marine ecosystems. 

However, it is crucial to approach the development of these models with caution. The review by Gray et al. (2024) warns of the 

risks of overfitting in models trained on limited datasets, which may result in poor performance when confronted with novel 

phenomena in a changing climate. Therefore, it is essential to use robust, representative data and to ensure that models are 

generalisable. 

 

The future outlook for the use of machine learning techniques in marine analysis is encouraging, as noted by Zhang et al. 

(2024), who highlight the potential of remote sensing data and machine learning in the localisation of marine equipment, 

suggesting continued growth in its application and effectiveness in ocean science. Monitoring the oceans through unsupervised 

algorithms has gained importance in the fields of marine science and data analytics. These algorithms are used to detect patterns 

and anomalies in large volumes of data without the need for predefined labels (Table 2). 

 

Table 2. Comparative Table of Unsupervised Algorithms. 

Algorithm Type Advantages Disadvantages Typical 

Applications 

K-means Partitional clustering Simple; efficient 

on large datasets 

Sensitive to 

initialisation; 

requires prior 

choice of k 

Customer 

segmentation; 

data compression 

Hierarchical 

clustering 

Agglomerative/divisive 

clustering 

Does not require 

pre-set number of 

clusters; 

interpretable 

dendrogram 

Computationally 

expensive; difficult 

to choose optimal 

cut 

Taxonomies; 

phylogenetic 

analysis 

DBSCAN Density-based 

clustering 

Detects 

arbitrarily shaped 

clusters; 

separates noise 

Sensitive to ε and 

minPts; scales 

poorly in high 

dimensions 

Anomaly 

detection; 

geospatial 

clustering 

Gaussian 

mixture models 

Probabilistic clustering Models cluster 

overlap; provides 

membership 

probabilities 

Requires 

parameter 

estimation; may 

converge to local 

optima 

Density 

estimation; soft 

clustering 

PCA (Principal 

Component 

Analysis) 

Dimensionality 

reduction 

Linear 

projection; 

components are 

interpretable 

Captures only 

linear 

relationships; 

assumes major 

variance 

Visualisation; 

preprocessing; 

compression 

t-SNE Non-linear 

dimensionality 

reduction 

Excellent for 

2D/3D 

visualisation 

Computationally 

expensive; does 

not preserve global 

distances; 

parameter-

sensitive 

Data exploration; 

high-dimensional 

visualisation 

Autoencoders Dimensionality 

reduction/self-learning 

Captures 

complex non-

linearities; 

tunable with deep 

networks 

Requires large 

datasets and 

hyperparameter 

tuning; black box 

Anomaly 

detection; 

dimensionality 

reduction 

Self-Organising Self-organising maps Mesh-based Slow in high Pattern analysis; 
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Map (SOM) visualisation; 

preserves 

topological 

relationships 

dimensions; 

complex grid-

tuning 

cluster 

visualisation 

 

Unsupervised algorithms are essential tools for interpreting satellite data in ways that support sustainable ocean management. 

By revealing hidden patterns in complex marine systems, these methods improve the monitoring of ecological changes and 

inform decisions that promote resilience and long-term environmental sustainability. 

 

The Probabilistic Clustering Model (PCM) has been employed to cluster Argo data in the Northwest Pacific Ocean, revealing 

how variations in ocean currents, such as the Kuroshio Extension, influence the ocean’s vertical structure (Sambe & Suga, 

2022). 

 

In the detection and monitoring of harmful algal blooms (HABs), unsupervised classification techniques have shown 

considerable potential in processing satellite imagery to identify significant ecological changes. Optical approaches evaluating 

backscatter and absorption anomalies have been integrated with machine learning methods to monitor these blooms (Wolny et 

al., 2020). Such integration enables timely interventions to mitigate the threats posed by HABs to marine ecosystems and 

fisheries, thereby supporting sustainability in ocean management. 

 

The application of unsupervised learning also extends to the detection and assessment of oceanic features. For example, 

researchers have developed algorithms for the automatic detection of ocean fronts using deep learning edge-detection models 

applied to satellite imagery (Wan et al., 2025). 

 

For biological and biogeochemical monitoring, unsupervised techniques have been used to derive consistent ocean-biological 

products from various satellite ocean-colour sensors. This approach ensures improved integration and interpretation of satellite-

derived data, supporting oceanographic research and marine resource management (Wang et al., 2020). Combining multiple 

satellite data sources enhances the reliability of assessments of ocean health and productivity. 

 

Furthermore, exploring sediment and seabed characteristics through unsupervised classification of seabed colour from satellite 

imagery represents another innovative application. By analysing the optical properties of shallow coastal waters, this technique 

provides baseline data on sediment transport and habitat conditions, informing coastal zone management (Parsons, Amani, 

Moghimi 2021). 

 

A significant application of unsupervised algorithms, such as k‑means, is the classification of patterns in spatial and temporal 

data. For example, Espinoza‑Guillen and Malpartida (2021) employed the k‑means clustering algorithm to identify 

homogeneous regions of carbon monoxide in Metropolitan Lima, demonstrating the ability of these methods to group data 

according to similarities in the behaviour of measured variables. This approach could be equally adapted to monitor water 

quality in marine bodies, helping to identify areas with varying levels of pollution or differences in chemical composition, as 

suggested by Dharmarathne, et al. (2025). 

 

In addition, the research of Rozenstein  & Karnieli (2011) highlights the effectiveness of both supervised and unsupervised 

classification methods in assessing land cover, which can be closely related to the monitoring of marine habitats and the 

classification of different types of seabed substrates. Using satellite imagery and clustering techniques, it is possible to obtain 

accurate maps of marine seafloor cover, thereby facilitating the study of temporal changes in coastal ecosystems. 

 

Another relevant example is provided by the study of Martínez‑Mora et al. (2022), which recognises the value of unsupervised 

machine learning algorithms, noting that the ability to detect hidden patterns in complex data can lead to significant discoveries 

in various applications, including environmental health monitoring in oceans. This type of exploratory analysis is fundamental 

for revealing time series patterns and anomalous behaviours in marine data. 

 

In practice, the implementation of clustering techniques, such as DBSCAN, as noted in the work of Kavanaugh, Oliver, Chavez 

& Letelier (2014), offers interesting perspectives for classifying risk levels associated with climatic phenomena and their impact 

on ecosystems, even though their focus is primarily on migration. By segmenting areas based on specific criteria, vulnerable 

regions can be identified, enabling researchers to direct conservation and restoration efforts more effectively. 
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The application of artificial intelligence techniques, specifically deep learning and machine learning methods, has become an 

essential tool for estimating and analysing critical parameters in environmental studies, such as chlorophyll‑a concentration 

(Chl‑a) and sea surface temperature (SST). These methodologies enable the efficient processing of large volumes of data, 

thereby improving the accuracy of predictive models compared with traditional approaches (Yang et al., 2023; Quang et al., 

2021). 

 

Studies employing machine‑learning models to estimate Chl‑a concentrations have yielded promising outcomes. For instance, 

Yang et al. (2023) implemented a residual network for Chl‑a retrieval from HY‑1C satellite data, demonstrating the 

effectiveness of deep‑learning techniques for satellite imagery. Similarly, Ye et al. (2021) used a convolutional neural network 

to determine Chl‑a concentrations in the Pearl River Estuary, illustrating the flexibility and adaptability of AI‑based methods 

across diverse marine environments. Such advances are particularly significant given that chlorophyll is a principal indicator of 

aquatic‑ecosystem health and productivity, often correlating with total suspended solids and water‑quality conditions (Keller  et 

al., 2018). 

 

For SST, machine‑learning techniques have been devised to extract meaningful patterns from satellite data, enhancing our 

understanding of ocean dynamics that affect marine ecosystems. These models have applications not only in predicting SST but 

also in assessing its influence on phytoplankton biomass (Cho et al., 2018). 

 

With regard to TTS, machine‑learning applications have facilitated the investigation of sedimentation in water bodies by 

correlating water‑quality data with TTS and Chl‑a measurements. By employing techniques such as random‑forest regression 

and support‑vector machines (SVMs), researchers have modelled TTS with greater fidelity than previous methods (Silveira 

Kupssinskü et al., 2020). Data‑fusion approaches, which integrate satellite imagery observations and in situ measurements, have 

proven particularly effective (Jimeno‑Sáez et al., 2020). 

 

The effectiveness of these AI techniques resides in their capacity to process large volumes of multifaceted data and to uncover 

non‑linear patterns discernible in the field. 

 

 

3 Application in Marine Protected Areas and Sustainable Fishing Zones 
 

The relationship between chlorophyll‑a (Chl‑a), sea surface temperature (SST) and marine pH is essential for understanding 

marine ecosystems and their response to climatic variations. Chl‑a is a key indicator of phytoplankton biomass, which is 

strongly influenced by SST and ocean pH. Increased total suspended solids (TSS) lead to more pronounced stratification of the 

water column, reducing vertical mixing and, consequently, nutrient availability in the surface layers, thereby negatively 

affecting phytoplankton production and Chl‑a concentration in the ocean (Raitsos et al., 2011; Wang et al., 2022). 

  

In addition, ocean pH acts as a chemical thermometer of acidification, information that is critical in the context of increasing 

atmospheric CO2 and its effect on marine ecosystems. Acidification is associated with anthropogenic changes and can enhance 

eutrophication, affecting the health and sustainability of marine communities, thus influencing the availability of nutrients 

needed by phytoplankton (Cai et al., 2015). The interrelationship between TSS, pH and CHL implies that a change in one of 

these parameters can have knock-on effects on the others, underlining the importance of continuous monitoring of these 

variables in the context of climate change (Wang et al., 2022). 

 

Evidence shows that, as global warming continues, an increase in the frequency and intensity of marine heatwave events 

(MHWs) is expected, which not only affect SST, but also impact ocean biodiversity and resources that depend on phytoplankton 

health (Oliver et al., 2018). Projections indicate that these changes may lead to dramatic alterations in planktonic communities, 

which serve as the basis of the oceanic food chain, representing a significant challenge for the sustainable management of 

marine resources (Costa & Rodrigues, 2021; Oliver et al., 2018). 

 

The interaction between TSS, pH and chlorophyll-a is therefore fundamental to understanding how marine ecosystems respond 

to climate variability. The ability of phytoplankton communities to adapt to these changes is crucial not only for the health of 

marine ecosystems, but also for the food security and livelihoods of populations directly dependent on the ocean (Hartmann, 

2015). Integrated monitoring that assesses TSS, CHL and pH is essential for future research and management of marine 

ecosystems in the context of climate change. 

We tackled a major challenge: building a comprehensive, multivariate dataset for the Gulf of Mexico. Each record needed 

precise coordinates and reliable measurements. Accordingly, we focused on essential oceanographic parameter: Chlorophyll‑a 
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(Chl‑a), a cornerstone of climate studies. Chlorophyll‑a (Chl‑a) is a fundamental pigment for photosynthesis in phytoplankton 

and is therefore a key indicator of the health of marine ecosystems. Its concentration provides valuable information on primary 

production and biogeochemical dynamics in the ocean. 

 

First, it is crucial to consider that Chl‑a is the principal photosynthetic pigment in phytoplankton, which form the foundation of 

the marine food web. Graham et al. (2015) discuss how Chl‑a concentrations derived from satellite data are essential for 

inferring iron supply regions in the Southern Ocean. The availability of this nutrient is a key determinant of phytoplankton 

growth, which in turn affects ocean primary production, as highlighted by Feng et al. (2015). 

 

Furthermore, Rinaldi et al. (2013) emphasise that Chl‑a is one of the most validated and widely available ocean colour 

parameters, preferred over other biological indicators that may be subject to greater uncertainty. This underscores the 

importance of Chl‑a not only as a biological marker but also due to its ease of measurement through remote sensing techniques , 

enabling large‑scale monitoring. 

 

Another relevant aspect of Chl‑a is its relationship with climate change and its impact on marine productivity. Roxy et al. (2016) 

discuss how satellite‑measured chlorophyll concentrations can serve as an indicator of primary productivity, which is itself 

influenced by warming in tropical oceans. Such warming can increase nutrient limitation, potentially affecting phytoplankton 

negatively and, consequently, the marine food web. 

 

Chl‑a patterns also vary significantly in response to environmental drivers such as El Niño, as observed by Park et al. (2011). 

Their study uses satellite data to analyse the relationship between Chl‑a variability and climate events, adding another layer of 

complexity to ocean health monitoring. 

 

In specific regimes such as the Coral Sea, research by Welch et al. (2015) shows that Chl‑a concentrations can define ecological 

regimes and are essential for comparing marine protected areas. This indicates that Chl‑a dynamics not only have biological 

implications but also important applications in marine resource management. The use of satellite imagery and novel 

data‑retrieval algorithms has improved the accuracy of Chl‑a estimates. Clay et al. (2019) evaluate satellite‑based tools used to 

retrieve Chl‑a concentrations in different oceanic regions, highlighting their importance for studies in biogeochemical 

oceanography and climate change. 

 

Satellite services provide complete databases—geo‑referenced matrices filled with empty cells or null values—that increase file 

size without adding useful information. While comprehensive, these datasets are inefficient until we preserve the spatial and 

temporal integrity of valid data. To remedy this, we devised a step‑by‑step filter: first, discarding all observations with null 

values or outside plausible ranges; then, aligning the dates and spans of each variable at every geographic point. 

 

The result is a single, streamlined and powerful CSV file in which each row represents a location in the Gulf by latitude, 

longitude and date, accompanied by its three cleaned measurements—ready for GIS analysis, statistical modelling or interactive 

visualisations. Quick to load, this dataset is perfect for extracting trends and patterns. Now, the resulting information flows with 

consistency and precision, ready to illuminate the Gulf’s oceanographic dynamics. 

 

We wrote a Python script that is as elegant as it is robust. In just a few lines, the official copernicusmarine library handles the 

API calls. With xarray, we open and manipulate the multidimensional variables (Chl‑a, SST and pH) as though they were simple 

DataArrays; pandas then help us convert that data into a tidy, easy‑to‑merge DataFrame. 

 

The workflow was structured as follows:  

1. Initial configuration. The temporal range was defined from 1 June 2023 to 1 June 2025, and a geographical rectangle 

was established covering latitudes 18°N–30°N and longitudes –98° to –81°. 

2. Data download and loading. On a daily basis, the function copernicusmarine.dataset.retrieve() was used to download 

one NetCDF file per variable. Each file was opened with xarray.open_dataset(), from which the desired layer was 

extracted, while dates or cells without valid data were discarded. 

3. Intelligent filtering. Values that were either null or outside plausible ranges (for example, pH < 7 or > 9) were removed. 

Temporal and spatial dimensions of the three variables were then harmonised to ensure exact alignment. 

4. Final unification. Each cleaned DataArray was converted into a DataFrame using to_dataframe().reset_index(). These 

were then merged using the pandas.merge() function, aligning CHL, SST and pH by date, latitude and longitude. The 

final result was stored in a CSV file, ready for GIS analysis or statistical modelling. 
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The dataset employed for chlorophyll-a was sourced from the Copernicus Marine Environment Monitoring Service under the ID 

cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D and is internally designated as CHL; this Level 4, gap-free 

product provides daily global fields at a 4 km spatial resolution, blending satellite observations with in situ measurements to 

deliver a consistent time series of surface chlorophyll-a concentrations, which are widely used to monitor phytoplankton 

biomass, assess primary productivity and evaluate ocean health across the world’s seas. 

 

For each variable, an individual pandas DataFrame was created and cleaned using the dropna() method to remove any rows 

lacking measurements. These cleaned DataFrames were then consolidated into a single, well-structured CSV file. 

 

The resulting file, named golfo_mexico_copernicus.csv, contains only records with valid values and is organised into the 

following fields: 

 

• fecha: the date of the observation (format YYYY-MM-DD) 

• hora: the exact time of the observation (UTC) 

• lat: the latitude of the point 

• lon: the longitude of the point 

• variable: the name of the variable (one of chlor_a, sst or ph) 

• valor: the measured or estimated value of the corresponding variable 

 

These fields support direct geospatial analysis in GIS software such as QGIS or ArcGIS, as well as statistical analysis and 

visualisation in Python, R or Power BI. 

 

The final CSV file occupies approximately 10 GB on disk and encompasses a total of 183,793,215 records, each of which has 

been verified to contain a valid measurement. Figure 1. 

 

The temporal span of the dataset extends from 1 June 2023 to 1 June 2025, with observations recorded on a daily basis, subject 

to the availability of each variable’s data on any given day. 

 

 
Fig. 1. The final CSV file. 

 

 

The application of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures in the context of Marine 

Protected Areas (MPAs) and sustainable fishing zones represents an emerging area of study within marine science. These 

recurrent neural network (RNN) architectures are particularly well suited to handling time‑series data, which is critical for 

understanding ecological dynamics, species movements and environmental changes in these regions. LSTMs and GRUs are 

specialised forms of RNNs designed to capture long‑term dependencies in sequential data. LSTMs, introduced by Hochreiter 

and Schmidhuber, address the vanishing gradient problem associated with traditional RNNs by employing gates that regulate the 

flow of information through time. GRUs, a simplified variant proposed by Cho et al. (2018), utilise fewer parameters by 
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combining the forget and input gates into a single update gate, often resulting in faster training times and comparable 

performance (Yuan & Mahmoud, 2020). 

 

Research has shown that LSTMs can effectively model complex relationships in marine environments. Recent studies 

demonstrate their potential in predicting critical factors such as marine currents, temperature variations and chlorophyll‑a 

concentrations—parameters essential for assessing marine ecosystem health and MPA effectiveness (Ali et al., 2021). GRUs 

have been similarly employed for predictive tasks, providing efficient processing of the extensive datasets generated by marine 

monitoring systems. 

 

In marine conservation, understanding species distribution and movement patterns is essential for effective management. The 

use of LSTM and GRU models facilitates the analysis of spatiotemporal patterns, enabling the identification of critical habitats 

within MPAs and informing decisions regarding the sustainable use of marine resources. For example, MacKeracher et al. 

(2018) integrate species movement data with economic factors to improve conservation planning for sharks and rays, an 

approach that could be enhanced by predictive models based on LSTM or GRU architectures. 

 

The integration of LSTM and GRU architectures can also advance sustainable fisheries management within MPAs. 

Dharmarathne et al. (2025) highlight the socio‑economic benefits of MPAs for small‑scale fisheries. Predictive models 

forecasting fish populations and environmental conditions allow fisheries to adapt their practices to ecosystem health, 

supporting both conservation and economic viability. Furthermore, data derived from these models can inform stakeholders 

about best practices for sustainable fishing, optimising efforts within designated zones while protecting vulnerable species 

(Davies et al., 2021). 

 

Dwyer et al. (2020) emphasise the effectiveness of MPAs in mitigating fishing pressure while enhancing fish populations. 

Leveraging models such as LSTM and GRU to analyse MPA datasets could provide deeper insights into how these areas act as 

refuges for diverse species, thereby supporting management strategies aimed at sustaining fisheries and promoting ecological 

recovery. 

 

The following pseudocode outlines the end‑to‑end procedure for detecting anomalies in environmental time‑series data using 

both LSTM and GRU architectures. It details the steps for loading and preprocessing multivariate observations (chlorophyll‑a,), 

constructing sliding‑window sequences, normalising the data, initialising and training recurrent models, and finally computing 

error thresholds to flag anomalous events. This structured approach ensures reproducibility and facilitates direct comparison of 

LSTM versus GRU performance. 

 

 

 

#### PSEUDOCODE of LSTM y GRU ANOMALIES 

BEGIN 

1. LOAD DATASET 

    - Read environmental dataset containing CHL, SST, and pH. 

    - Convert 'date' and 'time' into a single 'datetime' object. 

    - Pivot data into rows with columns: [datetime, lat, lon, CHL, 

SST, pH]. 

2. SELECT COORDINATE 

    - Identify the most frequently observed (lat, lon). 

    - Filter the dataset to keep only records for that location. 
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    - Sort the time series in ascending order of datetime. 

3. BUILD SEQUENCES 

    FOR each timestep t from 0 to (length - window_size - 1) DO 

        - Extract the previous 'window_size' values of all variables 

→ input_sequence 

        - Extract the next value at time t+1 → output_sequence 

        - Append input_sequence to X 

        - Append output_sequence to Y 

    END FOR 

4. NORMALISE DATA 

    - Apply Min-Max scaling to all input and output values. 

    - Split X and Y into training and testing sets. 

5. INITIALISE MODELS 

    FOR model_type IN [LSTM, GRU] DO 

        - Create a recurrent neural network using model_type. 

        - Add a dense output layer matching the number of predicted 

variables. 

        - Compile the model with a suitable loss function (e.g., 

MSE). 

        - Train the model using the training data. 

        - Predict outputs using the testing data. 

    END FOR 

6. COMPUTE PREDICTION ERROR 

    - Calculate the error for each test sample (difference between 

predicted and actual values). 

    - Store error values for each model. 

7. DETECT ANOMALIES 

    - Determine a threshold based on a high quantile (e.g., 95th 

percentile) of the errors. 
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    FOR each test sample DO 

        IF error > threshold THEN 

            Label sample as 'anomalous' 

        ELSE 

            Label sample as 'normal' 

        END IF 

    END FOR 

8. VISUALISE AND REPORT 

    - Plot error values and mark anomaly threshold. 

    - Display the number and position of detected anomalies. 

    - Compare anomaly detection performance between LSTM and GRU. 

END 

 

Both models (Table 3 and Table 4)  are recurrent neural networks employed to forecast the evolution of the target variable at 

selected points across the Gulf of Mexico. The GRU (Gated Recurrent Unit) yields more dynamic forecasts that closely mirror 

the trends observed in the historical series. For example, the peak value of 1.9437 on 2 June 2025 at the first location suggests a 

considerable uptick following previously elevated measurements. Its mechanism for selectively retaining and discarding 

information enables it to capture abrupt changes and seasonal patterns with greater agility. 

 

In contrast, the LSTM (Long Short-Term Memory), despite being architected for extended memory horizons, produces a 

notably conservative and almost uniform forecast in most instances (0.0777), aside from the first coordinate. This uniformity 

may result from a training regime that emphasised minimisation of overall error at the expense of oscillatory behaviour, or from 

hyperparameter settings—such as specific learning rates or cell-state sizes—that induce saturation in its forget gates, thereby 

dampening sensitivity to moderate fluctuations. 

 

When anticipating sharp variations and pronounced peaks in the variable (for instance, during phytoplankton blooms), the GRU 

appears to deliver more adaptive and responsive forecasts. Conversely, the LSTM may be preferable if a steadier, more noise-

resilient prediction is required, provided that its architectural and training parameters are meticulously tuned. 

 

Table 3. Results of GRU. 

 

 

Latitude Longitude Date Forecasted value 

18.1 -97.5 2025-06-02 1.9437 

19.3 −94.7 2025-06-10 0.5817 

21.8 −90.4 2025-07-05 1.5452 

24.5 −87.2 2025-07-18 0.7884 

28.0 −83.5 2025-07-22 0.8173 
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Table 4. Results of LSTM. 

 

The approach begins with the unsupervised identification of both natural patterns and anomalies by combining clustering with 

dimensionality-reduction techniques. In this workflow, DBSCAN is employed to delineate coherent ecological groupings, while 

data points that fall outside these clusters are flagged as potential disturbance hotspots. This dual strategy enables the detection 

of emerging irregularities without the need for prior labelling. 

 

Once the clusters and outliers have been identified, their geographic coordinates and corresponding cluster labels are exported in 

a format compatible with Google My Maps or QGIS (together with the QuickMapServices plugin). These results are then 

overlaid upon a high-resolution satellite or bathymetric base map of the Gulf of Mexico. By mapping the clusters in QGIS or 

Google Maps, it becomes straightforward to verify whether they align with real-world features—such as coastal fringes, 

upwelling zones or areas at elevated risk—and to guide further ecological or management investigations. 

 

This pseudocode outlines an unsupervised approach for uncovering intrinsic patterns and flagging anomalies within multivariate 

environmental data. By first harmonising chlorophyll‑a (Chl‑a), —alongside their spatial and temporal metadata—we then 

employ dimensionality‑reduction techniques to render complex relationships visible. Subsequent clustering (via methods such as 

DBSCAN) reveals natural groupings, whilst outliers and noise points are identified as potential ecological disturbances. Finally, 

we annotate each record with its cluster assignment and anomaly status before exporting the enriched dataset for further 

geospatial analysis or visualisation. This workflow ensures a robust, reproducible pipeline for exploratory data analysis and 

anomaly detection in marine environments. 

 

 

 

### Pseudocode: Unsupervised Pattern Discovery and Anomaly Detection  

BEGIN 

1. LOAD MULTIVARIATE DATA 

   - Import dataset containing environmental variables: chlorophyll-

a (CHL). 

   - Ensure data includes spatial coordinates (latitude, longitude) 

and timestamps. 

2. CLEAN AND STANDARDISE DATA 

   - Remove missing or invalid values. 

   - Standardise variable ranges for comparability. 

3. APPLY CLUSTERING ALGORITHM 

   - Choose a clustering method: 

Latitude Longitude Date Forecasted value 

18.1 -97.5 2025-06-02 0.8960 

19.3 −94.7 2025-06-10 0.0777 

21.8 −90.4 2025-07-05 0.0777 

24.5 −87.2 2025-07-18 0.0777 

28.0 −83.5 2025-07-22 0.0777 
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     • Use DBSCAN for irregular or noisy ecological patterns. 

   - Fit the clustering algorithm to the reduced dataset. 

4. IDENTIFY ANOMALOUS POINTS 

   - Mark points that do not belong to any cluster (outliers in 

DBSCAN) or lie far from their assigned group. 

   - Consider these as potential ecological disturbances or 

anomalies. 

5. EXPORT RESULTS 

   - Attach original latitude and longitude to each sample. 

   - Assign cluster labels and anomaly flags to each record. 

   - Export the enriched dataset as: 

     • CSV or KML file for use in Google My Maps. 

     • GeoJSON or shapefile for use in QGIS with QuickMapServices. 

6. OPTIONAL: VISUALISE 

   - Generate a map showing cluster groupings and highlight detected 

anomalies. 

   - Use colour coding for clusters and a distinct marker for 

anomalies. 

END 

 

 

 

4 Algorithm Output and Visualisation 
 

Cluster Mapping 

 

The following table summarises the clusters, their mean values, new identifiers and descriptive labels: 

 

Table 5. Cluster Mapping. 

Cluster Mean value New ID Label 

0 0.511 0 Normal 
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1 13.211 1 Intermediate 

2 23.701 2 Atypical 

 

 

The DBSCAN algorithm was applied to a large dataset of over seventy million records. A representative subset of 100,254 

points was selected to train the model with ε (the neighbourhood radius) set to 0.5 and a minimum of 10 samples per cluster. 

The training completed in approximately fourteen seconds, revealing three distinct clusters alongside noise points (labelled –1). 

Cluster 0, with a mean value of 0.511, represents the “Normal” regime where the measured variable remains at background 

levels. Cluster 1 exhibits a higher mean of 13.211 and is labelled “Intermediate”, indicating moderate deviations from the norm. 

Finally, Cluster 2’s mean of 23.701 designates it as “Atypical”, capturing extreme outliers or hotspots of disturbance. 

 

This labelling and mapping process facilitates rapid identification of regions requiring further investigation, whether they be 

stable background conditions, areas of moderate change, or critical anomalies. By overlaying these clusters on a geographical 

base (for example, a satellite or bathymetric map of the Gulf of Mexico), one can visually inspect whether the “Atypical” points 

correspond to known ecological events, coastal upwellings, or other phenomena of interest. 

 

 

DBSCAN Output 

 

Total number of records: 70,178,384 

Loading sample for DBSCAN… 

→ Sample size: 100,254 points 

Training DBSCAN (ε = 0.5, min_samples = 10)… 

→ Completed in 14.3 s 

→ Clusters found (excluding noise): 3 

→ Labels present in sample: [–1 (noise), 0, 1, 2] 

 

The figure 2 presents a comprehensive view of the Gulf of Mexico and its neighbouring shores, overlaid with the red-dot 

anomalies detected by DBSCAN. It illustrates the full spatial extent of sampling—from the western Yucatán Peninsula around 

to the Florida Keys and up to the Texas–Louisiana coastline—providing a clear sense of where the most extreme values cluster 

along the basin’s perimeter. 

 

 

 
Fig. 2. Overview of the Gulf of Mexico Study Area. 
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This (figure 3) close-up focuses on the Cuban archipelago, revealing concentrated clusters off the northern coast of Cuba and 

around Isla de la Juventud. The spatial pattern suggests persistent hotspots of elevated measurements, perhaps linked to regional 

upwelling zones or riverine outflows influencing chlorophyll or temperature anomalies in these waters. 

 

 
Fig. 3. Detailed View of Cuban Coastal Anomalies. 

 

Figure 4, attention shifts to the Mexican littoral, where red-dot markers trace a near-continuous band of anomalous readings 

from the Laguna Madre near Tamaulipas down to the Campeche Sound. The density of points reflects both extensive data 

coverage and recurring perturbations likely associated with coastal shelf dynamics and terrestrial inputs along this stretch. 

 

 

 

 
Fig. 4. Mexican Coastline Anomaly Distribution. 

 

The final map zooms in on the US Gulf Coast (figure 5), from Brownsville, Texas, through the Mississippi Delta, and across to 

Florida’s panhandle and Keys. It highlights regions of particularly intense clustering—such as around Galveston Bay and the 

Louisiana coast—underscoring zones where environmental drivers (e.g., river discharges, nutrient plumes) may be generating 

pronounced anomalies. 
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Fig. 5. Gulf Coast of the United States. 

 

 

 

5 Conclusions and Future Directions 
 

The successful application of Artificial Intelligence in ocean management represents a significant step towards more informed 

and sustainable decision-making. In this study, we have demonstrated how satellite data and AI technologies can substantially 

enhance the monitoring and management of marine resources. 

 

The integration of multivariate satellite-derived data has facilitated the development of precise thematic maps that identify zones 

of high biological productivity and areas at ecological risk. These tools are essential for informed and responsible decision-

making in the context of marine spatial planning and conservation efforts. 

 

The global sharing of marine data and scientific knowledge can significantly enhance our collective understanding of oceanic 

systems. Strengthening international collaboration in the field of marine artificial intelligence presents an opportunity to advance 

more coherent and effective policies for the protection and sustainable use of marine resources. 

 

The establishment of ethical standards and regulatory frameworks for the application of AI in marine environments is 

increasingly urgent. Ensuring that emerging technologies are deployed responsibly requires a coordinated effort among 

researchers, industry stakeholders, policymakers, and civil society organisations. A shared governance model is necessary to 

guide the ethical development and deployment of AI in support of ocean sustainability. 

 

As the integration of artificial intelligence and satellite data continues to reshape the landscape of ocean monitoring and 

management, it becomes increasingly important to chart a course for future action. While recent advances have demonstrated 

the potential of AI to enhance ecological understanding and support more informed decision-making, further progress depends 

on sustained investment, institutional coordination, and ethical foresight. The following priority areas outline key directions for 

advancing the field and ensuring its long-term contribution to ocean sustainability: 

 

• Augmentation of Capacity Building and Training. Expanding the training and education of professionals in the use 

of advanced ocean technologies is vital to fully realise the potential of artificial intelligence in marine contexts. 

Equipping scientists, technicians, and decision-makers with the necessary digital and analytical skills will ensure that 

AI-driven tools are deployed effectively and responsibly.  

• Development of World-Leading Technology. Investment in the research and development of cutting-edge marine AI 

technologies should be encouraged, with an emphasis on adaptability to diverse oceanographic and socio-

environmental conditions worldwide. Promoting innovation in sensor design, data fusion techniques, and predictive 

modelling will be key to addressing emerging challenges in ocean management.  

• Establishment of Interoperability Networks. The creation of international and cross-institutional networks to 

promote the ongoing exchange of ocean data, tools, and expertise is essential. Interoperable systems and open 
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standards will facilitate collaboration and support the development of globally coordinated ocean governance 

frameworks. 

• Promoting Sustainable Environmental Policies. Technological advancements must be implemented alongside robust 

environmental policies and inclusive management strategies. AI should serve as a tool to strengthen responses to major 

global challenges, including climate change, ocean acidification, and biodiversity loss, ensuring that innovation 

contributes to sustainability and long-term ocean resilience. 

 

The application of Artificial Intelligence to ocean governance brings immense potential, but also raises a number of pressing 

ethical and technical concerns. As marine datasets become increasingly accessible and AI technologies continue to evolve, the 

need for responsible governance frameworks becomes paramount. 

 

One key ethical dilemma lies in balancing open access to oceanographic data with the protection of strategically sensitive 

information. While open data promotes collaboration and scientific progress, unrestricted access could expose economically and 

geopolitically valuable data, posing risks to national security. Clear international agreements must be established to determine 

which data should remain confidential and how shared resources can be used responsibly for mutual benefit. 

 

On a technical level, there remains a significant digital divide between nations. Countries with advanced infrastructure and 

expertise are more likely to lead in developing and applying AI for marine management, while others risk marginalisation. In 

response, it is vital to promote global inclusion through equitable access to technology, transparent validation of predictive 

models, and targeted capacity-building in AI ethics. Only through coordinated international efforts can marine AI be deployed 

in a sustainable, fair, and accountable manner. 

In the field of ocean monitoring, several ethical and technical challenges arise, particularly concerning open access to maritime 

data, the technological gap in the use of environmental artificial intelligence (AI), and the validation and auditing of predictive 

models. 

 

Open access to ocean monitoring data is essential for research and sustainable development. However, it raises concerns about 

the privacy and security of strategic information. Unrestricted sharing of data carries the risk that sensitive information, such as 

the locations and conditions of protected areas, could be misused for unethical purposes, including illegal fishing or maritime 

trafficking. Balancing open access with the need to safeguard sensitive data requires appropriate regulation and management 

strategies to ensure responsible data sharing, promote scientific collaboration and protect maritime resources. 

 

The technological gap between countries in applying artificial intelligence to address environmental issues is a critical 

challenge. Many developing countries lack the necessary infrastructure to implement advanced AI solutions, limiting their 

ability to monitor and protect their ocean resources. This gap is both technical and educational, with limited access to high-

quality technological education exacerbating existing disparities. Addressing this issue calls for international cooperation and 

capacity‑building programmes that facilitate access to AI technologies, enabling these countries to engage more effectively in 

broader conservation efforts. 

 

The validation and auditing of predictive models are essential in the context of ocean monitoring. While these models are 

valuable, they can produce misleading results if not properly validated, affecting environmental management. A robust 

framework for model auditing is required to ensure transparency and accuracy. Continuous auditing can help identify 

non‑intuitive or erroneous variables that impact prediction accuracy. The emergence of machine learning techniques has 

introduced more systematic approaches to model auditing, yet these systems still require rigorous and ongoing evaluation to 

adapt to new conditions and data, particularly in such a dynamic environment as the ocean. 

 

The ethical and technical challenges in ocean monitoring are multifaceted and interrelated. As technology advances, it is crucial 

to implement integrative measures that promote equitable access to data and technology, help reduce technological disparities, 

and ensure the integrity of predictive models. Only through a collaborative and responsible approach can progress be made in 

protecting our oceans. 
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