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Abstract. Biomedical datasets often contain noise, missing 
values, imbalance, and heterogeneous feature structures, making 

them difficult to model reliably and complicating the extraction of 

discriminative patterns required for effective classification. 
Although modern machine-learning models can achieve strong 

performance on such data, many of these approaches operate as 

opaque systems, offering little insight into how decisions are 
produced—an essential requirement in biomedical applications. 

This work introduces the Explainable Artificial Immune System 

(XAIS), an immune-inspired classification model that delivers 
prototype-based explanations derived from similarity-driven 

antibody responses and complemented by performance-aware 

indicators, providing users with direct evidential insight into each 
decision. XAIS was evaluated on eight publicly available 

biomedical datasets using stratified 5-fold cross-validation and 

compared against standard machine-learning classifiers. The 
results show that XAIS attains competitive predictive performance 

while offering structured, instance-level evidential explanations, 

underscoring its potential as a transparent and trustworthy 
foundation for biomedical decision-support systems. 
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1 Introduction 

 
Biomedical data usually proves challenging for computational models, as it often exhibits incompleteness, high dimensionality, 

class imbalance, noise, high variance and nonlinear feature interactions. In addition, depending on the clinical scenario, it may be 

necessary to handle either scarce samples or very large volumes of data. These properties complicate the extraction of reliable 

patterns often requiring specialized computational approaches that can address data heterogeneity, manage uncertainty, and 

maintain model interpretability while ensuring clinical relevance and robustness. To address this issue many soft computing 

techniques have emerged, showing promising results and great performance in many healthcare applications (Han & Liu, 2021; 

Houssein et al., 2023).  

 

Despite the remarkable performance achieved by state-of-the-art Machine Learning (ML) models, their widespread adoption in 

healthcare remains limited by the lack of inherent transparency. Most Artificial Intelligence (AI) approaches operate as black 

boxes, offering little to no insight into the mechanisms underlying their predictions. This lack of interpretability and transparency 

becomes particularly problematic in biomedical applications, where understanding the decision-making process of a model is not 

merely desirable but essential for clinical reliability, ethical accountability, and regulatory compliance. The demanding nature of 

biomedical data exposes the need for methods that are explicitly engineered to be robust under such conditions while providing 

transparent, interpretable reasoning to support reliable clinical decision-making. Consequently, the domain of explainable artificial 

intelligence (XAI) has gained increasing prominence, giving rise to methodological frameworks—such as SHAP and LIME—

that attempt to render model behavior intelligible through local or feature-attribution explanations (Audemard et al., 2021; Zhou 

et al., 2022). 
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This demand for robust and interpretable analytical models has become even more pronounced over the past decade, as the rapid 

growth of heterogeneous biomedical data continues to expand both the scale and complexity of biomedical information. Together, 

these trends expose a persistent gap: the lack of computational frameworks specifically designed to accommodate biomedical data 

complexity while offering the interpretability required in clinical settings. 

 

Among soft computing models Artificial Immune Systems (AIS) stand out, they are bio-inspired computational models grounded 

in the biological immune system’s ability to defend the organism through the detection of pathogens and other foreign agents, 

develop cell-mediated adaptive responses, and their subsequent capacity to recognize and neutralize threats upon re-exposure 

(Aickelin, Dasgupta, et al., 2014). Numerous AIS variants have been developed, most are characterized by principles such as 

clonal selection, negative selection, and immune network theory. These models have been successfully applied to anomaly 

detection, feature selection, data mining, clustering, classification and optimization tasks (Aickelin et al., 2014; Sotiropoulos & 

Tsihrintzis, 2017). 

 

However, as with other AI approaches, most AIS variants behave as black-box systems, whose internal decision pathways remain 

difficult to trace, providing limited insight into how prototypes evolve or how affinities are computed. This lack of transparency 

presents a significant barrier in sensitive areas such as healthcare and cybersecurity, where interpretability and traceability are 

essential due to the high risks associated with misclassification. Recent surveys in AIS research emphasize that both 

interpretability and explainability remain as open challenge in AIS, calling for models that either expose their decision-making 

logic, integrate explanation mechanisms to support their predictions or provide interpretable outputs (Myakala et al., 2025). 

 

Moreover, the biomedical domain continues to be underexplored within AIS research, with only a few immune-inspired classifiers 

tailored to the specific challenges posed by clinical data. 

 

Among the few AIS variants explored in biomedical classification, AISAC stands out as a supervised, prototype-based model that 

has demonstrated promising performance across several medical datasets. However, AISAC—like most immune-inspired 

classifiers—does not incorporate mechanisms for explainability, and its adaptive processes remain opaque, offering no explicit 

information linking prototypes and the evidence driving each classification outcome. Consequently, AISAC does not address the 

methodological gap identified above: the lack of immune-based models capable of producing clear, clinically interpretable 

explanations alongside robust predictive performance (González-Patiño et al., 2020). 

 

To address this limitation, we introduce the Explainable Artificial Immune System (XAIS), an immune-based classifier that builds 

upon AISAC’s foundational principles while integrating a model-intrinsic explicability. XAIS offers transparency by revealing 

the evidence that supports each prediction and by indicating the expected reliability of its decisions through prototype-based and 

performance-aware mechanisms. In addition, the model allows users to select key training criteria—such as the dissimilarity 

metric used to compute antibody–antigen affinity and the evaluation metric that guides optimization—thereby aligning the 

learning process with domain-specific requirements and enabling the model to adapt to the characteristics of each task. 

 

XAIS was validated on several publicly available biomedical datasets and benchmarked against standard machine-learning 

classifiers using stratified k-fold cross-validation. The heterogeneity of these datasets allows for a comprehensive assessment of 

the algorithm’s robustness and enables a fair comparison under diverse class distributions and data complexities. By structuring 

its decisions through similarity-driven prototype selection and a transparent adaptive process learned during training, XAIS 

provides an accountable and traceable alternative to traditional classifiers, addressing modern requirements for explainability in 

biomedical decision-support systems. 

  

This article is organized as follows. Section 2 reviews related work on Artificial Immune Systems, with emphasis on AIS 

approaches for classification and their applications in biomedical contexts. Section 3 details the methodology, including the 

datasets, baseline models, and the internal dynamics of XAIS—prototype construction, adaptation mechanisms, and the 

mechanisms through which the model provides explainability. Section 4 presents the experimental setup and evaluation 

procedures. Section 5 discusses the results, and Section 6 presents the conclusions and outlines potential directions for future 

research. 
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2 Related Works 
2.1 Artificial Immune Systems 

 

Artificial Immune Systems (AIS) are inspired by the biological immune system, particularly by its ability to defend the organism 

through the detection of pathogens and other foreign agents, the development of cell-mediated adaptive responses, and the 

subsequent capacity to recognize and neutralize the same or similar threats upon re-exposure (Aickelin, Dasgupta, et al., 2014).  

 

2.2 Artificial Immune Systems for Classification 

 

AIS have been widely explored as bio-inspired approaches for optimization and pattern recognition tasks; however, their 

application to supervised classification has received comparatively less attention, as many AIS variants were not originally 

conceived with classification as a primary objective. This tendency is reflected in several immune-inspired proposals that 

emphasize feature selection rather than instance-level prediction (Dudek, 2012; Wang & Li, 2020) underscoring the versatility of 

AIS in representation-learning tasks while simultaneously highlighting the scarcity of models tailored specifically for 

classification. 

 

Early efforts demonstrated that immune-inspired algorithms could serve as viable alternatives to classical learning paradigms, 

particularly in scenarios where robustness and diversity are essential. One of the first AIS specifically designed for classification 

was Immunos-81, an abstraction of T-cell and B-cell interactions that models how antibodies respond to antigens. In its original 

evaluation on the Cleveland Heart-Disease Dataset, Immunos-81 achieved 83.2% accuracy using 10-fold cross-validation (Carter, 

2000), indicating that immune-inspired abstractions could capture discriminative patterns in clinical features. Subsequent work 

formalized the clonal selection principle in models such as CLONALG (De Castro & Zuben, 2002), which iteratively refine 

candidate solutions through cloning and hypermutation, showing competitive performance on supervised learning tasks. 

 

A major milestone in AIS classification came with the introduction of the Artificial Immune Recognition System (AIRS) (Watkins 

& Boggess, 2002). AIRS incorporates artificial recognition balls (ARBs), resource-limitation dynamics and memory-cell 

formation, enabling the classifier to generalize effectively from limited data. In two simulated binary-classification datasets, AIRS 

achieved 86% and 94% accuracies. Later variants, such as AIRS2, refined cloning and resource allocation mechanisms to reduce 

computational cost while preserving accuracy. Further advances extended AIS beyond antibody–antigen interactions. Do et al., 

(2009) proposed AIS-AC, an associative classifier based on clonal selection that integrates rule discovery and classification within 

a unified immune framework. Their experiments on datasets such as Adult, Letter, Nursery, Digit and Reuters-R8 reported 

accuracies ranging from 76.9% to 98.1%, demonstrating that immune-inspired systems can serve as alternatives to traditional 

associative classifiers in high-dimensional or sparse domains. 

 

Altogether, these contributions establish AIS as a family of models capable of competitive classification performance relative to 

conventional machine-learning methods, while offering desirable properties such as adaptivity, population diversity, resilience to 

noise, and compatibility with high-dimensional data. These characteristics have motivated growing interest in immune-based 

strategies as foundations for new classification frameworks, including applications in biomedical contexts. 

 

2.3 Artificial Immune Systems for Classification in Biomedical Data 

 

Biomedical datasets typically exhibit high dimensionality, noise, missing values, and class imbalance; therefore, computational 

models must be robust yet flexible enough to accommodate these challenges (Houssein et al., 2023). In this context, AIS-based 

classifiers tailored to biomedical data emerge as promising alternatives, as their population-based dynamics, clonal expansion, 

and memory selection mechanisms provide great performance while mitigating overfitting by preserving diversity. Early efforts 

in this direction, such as the work of Chikh et al. (2012) using AIRS2 and AIRS2-fuzzy-kNN for diabetes classification, reported 

accuracies of 82.69% and 84%, showing that immune-inspired processes can achieve competitive results even with limited or 

noisy clinical attributes.  

 

More advanced immune models have further strengthened this evidence. AISAC, for instance, builds representative prototypes 

through an adaptive response involving macrophage-like aggregation, B-cell activation, prototype adjustment and clonal 

refinement. Its associative classification mechanism stores antibody-like prototypes that are iteratively optimized using validation-

driven fitness, moving them closer to instances of their class and away from others. According to its original evaluation, AISAC 

achieved competitive or superior accuracy compared to well-established machine-learning methods and other immune-based 

classifiers, including AIRS, Immunos and CLONALG, across ten cancer-related datasets. These characteristics make AISAC one 
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of the few immune-based classifiers extensively validated on diverse medical datasets, including breast cancer detection tasks, 

consolidating the potential of immune-inspired learning in biomedical applications (González-Patiño et al., 2020).  

 

Recent work has also explored hybrid strategies that combine AIS components with classical machine-learning classifiers to 

address imbalance and noise. Slimani, (2023), for example, integrated a Negative Selection Algorithm (NSA) with Naïve Bayes, 

SVM and Logistic Regression for diabetes classification, achieving accuracies between 75% and 84%. These approaches highlight 

the growing interest in immune dynamics to enhance predictive reliability in complex settings.  

 

However, despite their performance, most AIS-based classifiers lack built-in explainability. Their decision processes remain 

opaque, limiting their suitability for high-stakes settings where traceability is required. Unfortunately, only a few immune-inspired 

classification models have incorporated explicit explanatory mechanisms, and these efforts remain isolated within the broader AIS 

literature. As a result, explainable AIS methods, particularly those designed for biomedical classification tasks, are still markedly 

underexplored, leaving an open research gap for models that can provide both competitive performance and clinically meaningful 

explanations. Motivated by this gap, we introduce XAIS, an immune-inspired classifier that builds upon AISAC while 

incorporating a redesigned architecture that enables intrinsic explainability and maintains performance. 

 

3 Methodology 

 

3.1 Datasets 

 
The experimental evaluation of XAIS was conducted using eight publicly available biomedical datasets that differ in 

dimensionality, class distribution, and clinical context. These datasets were selected to examine the behavior of the proposed 

method under heterogeneous conditions, ranging from moderate to high dimensionality and from balanced to markedly 

imbalanced class scenarios. The selection covers clinical and diagnostic scenarios related to oncology, dermatology, metabolic 

disorders and immunology. 

 

To ensure consistency across experiments, inclusion criteria for datasets were defined as follows: (i) provide a well-defined class 

label suitable for supervised classification, (ii) contain numerical-only feature representations (either integer, boolean or floating-

point values), (iii) can have missing values in its features and (iv) be commonly used as benchmarks in biomedical machine-

learning research.  

 

Three of the selected datasets contain missing values within their feature space, reflecting common patterns of incompleteness in 

real-world scenarios. In addition, two datasets are considered high-dimensional due to their features being ≥ 1000 and their 

relationship with their instance cardinality. A comparative summary of their main dataset characteristics is presented in Table 1. 

Additionally, a brief description of each dataset is provided below. 

 

Breast Cancer Wisconsin (Diagnostic) 

Breast Cancer Wisconsin Dataset comprises quantitative features extracted from digitized images of fine-needle aspirates (FNA) 

of breast masses. The attributes describe the morphological properties of cell nuclei. The dataset is widely used as a benchmark 

for binary classification in medical diagnosis and it is available in UCI Repository (Street et al., 1993). 

 

Dermatology  

Dermatology dataset was created to address the differential diagnosis of erythemato-squamous diseases, a group of skin conditions 

that share many symptoms. Target in the dataset are the six classes that represents the diseases considered in differential diagnosis: 

psoriasis, seborrheic dermatitis, pityriasis rosea, chronic dermatitis, lichen planus and pityriasis rubra pilaris. Skin biopsies are 

usually required to distinguish between them. Due to its multi-class structure, class imbalance and missing attribute values, it 

represents a challenging classification task. Dermatology dataset is available in UCI Repository (Ilter & Guvenir, 1998). 

 

Pima Indians Diabetes 

Pima Indians Diabetes is a dataset that belongs to National Institute of Diabetes and Digestive and Kidney Diseases. Comprises 

clinical information and measurements collected from female patients of Pima Indian heritage above the age of 21. Since it was 

created to diagnose diabetes mellitus, this dataset has been extensively used as a binary classification benchmark, challenging due 

to the incompleteness. It is available in Kaggle and previously available in UCI (Smith et al., 1988). 
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Bone Marrow Mononuclear Cells with AML. 

The dataset consists of gene expression profiles from bone marrow mononuclear cells obtained from 3 patients, one patient 

diagnosed with acute myeloid leukemia (AML) and two healthy controls. The samples were generated across three independent 

experiments available online in 10x Genomics under the names: AML027 pre-transplant BMMCs, Frozen BMMCs (Healthy 

Control 1), and Frozen BMMCs (Healthy Control 2) (10x Genomics, 2016c, 2016b, 2016a). 

 

Smoking Effects on B Lymphocytes 

This dataset consists of gene-expression data from peripheral circulating B cells from smoking and non-smoking healthy US white 

females. Since smoking-induced diseases are directly associated with B cells, the dataset provides useful information about the 

impact of smoking in women (Pan et al., 2010). 

 

Diabetes 

The Diabetes dataset contains medical information and laboratory analyses from Iraqi patients who are classified in 3 categories, 

non-diabetic, diabetic, and prediabetic. The data was originally acquired by the Laboratory of Medical City Hospital and is 

available on Mendeley Data. (Ahlam Rashid, 2020). 

 

Breast Cancer Digital Repository (BCDR) 

The BCDR-F01 subset from the Breast Cancer Digital Repository was used in this study. BCDR is provided by the Faculty of 

Medicine of the University of Porto and consists of 362 quantitative descriptors extracted from manually segmented lesions in 

digitised film mammograms. These descriptors include morphological measures, boundary-based statistics, and moment-based 

features derived from the regions of interest. The subset contains 200 biopsy-confirmed lesions from 190 Portuguese women aged 

28 to 82, of which 175 are labelled malignant and 187 benign. Although BCDR is a publicly available resource, full access requires 

a data usage agreement (Moura & Guevara López, 2013). 

 
Table 1. Overview of the main characteristics of the biomedical datasets. 

Dataset Instances Features Missing Values Classes Imbalance Ratio 

Diabetes 1000 11 No 3 15.92 

Smoking effect on B 

lymphocytes 
79 3000 No 2 1.025 

Dermatology 366 34 
Yes,  

8 values, 0.1% 
6 5.6 

Pima Indians Diabetes 768 8 
Yes, 

 652 values, 10.6%  
2 1.86 

Breast Cancer Wisconsin 

(Diagnostic) 
683 9 No 2 1.85 

Bone marrow 

mononuclear cells with 

AML 

1000 1000 No 2 1.11 

Lung Cancer 32 56 
Yes, 

 5 values, 0.3% 
3 1.44 

BCDR 362 38 
Yes, 

43 values, 0.3% 
2 1.06 

 

 

 

3.2 Classification Models 

 
To contextualize the performance of XAIS, several well-known machine-learning classifiers were implemented as baseline 

models. Each algorithm represents a different inductive bias and learning strategy, providing a diverse comparative framework. 

 

Naïve Bayes 

Naïve Bayes is a probabilistic classifier based on Bayes’ theorem under the assumption of conditional independence between 

features. Despite its simplicity, it often performs competitively in high-dimensional spaces and serves as a strong baseline for 

tabular biomedical data (Domingos & Pazzani, 1997).  
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Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a feed-forward neural network composed of fully connected layers trained via 

backpropagation. Its ability to model nonlinear decision boundaries makes it suitable for supervised classification tasks, although 

it typically requires careful tuning and sufficient training data (Rumelhart et al., 1986). 

 

Decision Tree 

Decision trees partition the feature space through recursively defined axis-aligned splits selected to maximize class purity. Their 

interpretability and ability to capture nonlinear relationships make them a widely used baseline in classification studies, 

particularly in heterogeneous datasets (Breiman et al., 2017). 

 

k-Nearest Neighbors (kNN) 

The kNN classifier assigns a label to a query instance based on the labels of its k-closest neighbors under a predefined distance 

metric. As a non-parametric, instance-based method, kNN is sensitive to local structure and provides a complementary perspective 

on the dataset (Cover & Hart, 1967). 

 

Support Vector Machine (SVM) 

SVM constructs a maximum-margin hyperplane to separate classes, optionally employing kernel functions to project data into a 

higher-dimensional space where linear separability is improved. Its stability and strong performance in high-dimensional 

biomedical features make it an essential baseline (Cortes & Vapnik, 1995). 

 

Random Forest 

Random Forest is an ensemble of decision trees trained on bootstrapped subsets of data and features. By aggregating predictions 

through majority voting, it reduces variance and often achieves robust performance on tabular biomedical datasets, especially in 

the presence of noise or nonlinearity (Breiman, 2001). 

 

Artificial Immune System for Associative Classification (AISAC) 

AISAC is an immune-inspired associative classifier that generates prototype-like antibodies through macrophage aggregation, B-

cell activation, clonal refinement, and validation-driven adaptation. Its compact prototype representation and iterative refinement 

mechanism allow it to achieve competitive performance on biomedical classification tasks, making it an appropriate immune-

inspired baseline for comparison (González-Patiño et al., 2020). 

 

 

3.3 Explainable Artificial Immune System (XAIS) 
 

The proposed “eXplainable Artificial Immune System” (XAIS) is an immune-inspired classification model that extends the 

conceptual structure of AISAC by redesigning its response dynamics to incorporate intrinsic interpretability. XAIS follows an 

eager-learning paradigm: rather than retaining the training set for later classification, it constructs internal data representations—

embodied as antibodies—that replace the original instances during prediction. 

 
XAIS formalizes two complementary computational mechanisms that mirror biological immunity: the acquired immune response, 

responsible for prototype-antibodies creation and optimization to represent data as a whole—training stage, and the innate immune 

response, which handles the classification of unseen instances through affinity evaluation —predictions stage. Figure 1 shows a 

flowchart describing XAIS framework with the innate and acquired responses and its phases. 
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Figure 1. Flowchart of the XAIS framework, detailing the phases of the adaptive and innate immune responses. 

 

3.3.1 Acquired Immune Response 

 

The acquired immune response corresponds to the training stage of the classifier and comprises five distinct phases: (i) the 

detection of antigenic macromolecules, (ii) the activation of B-lymphocytes, (iii) the regulation of the immune response, (iv) the 

development of adaptive immunity via clonal expansion and mutation, and (v) threat resolution through the consolidation of 

prototypes in the immune memory.  

 

The biologically inspired response initiates with the detection of antigenic macromolecules by macrophages. Each macrophage 

specializes in phagocytosing a specific number of antigenic determinants of the antigenic molecule. These macrophages then 

present the antigenic determinants to the T-helper lymphocytes, marking the beginning of the immune response (Phase 1). In 

phase 2, these lymphocytes will generate an immune response, activating a certain number of B-lymphocytes. The activated B 

lymphocytes will produce and release specific antibodies to the antigens presented by the macrophage. Then, the immune response 

will be controlled (Phase 3). If the immune response is satisfactory, the antibodies generated are preserved. If not, a process of 

readjustment of the antibodies generated is carried out, so that they can combine with the antigenic determinants presented. The 

development of adaptive or acquired immunity (Phase 4) is a meticulous process, where each antibody undergoes reconstitution, 

driven by clonal and mutation strategies to improve its immune response. Finally, in Phase 5, antigenic macromolecules are 

completely eradicated, and the adjusted antibodies are stored in the immune memory. 
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XAIS, as a computational model, require a training set 𝑈 = {𝑢1, … , 𝑢𝑛}, that represents the antigenic macromolecules, where each 

instance is represented by 𝑢𝑖 = [𝑢𝑖1, … , 𝑢𝑖𝑚] ∈ 𝑅𝑚. This set of data constitutes the antigenic determinants (epitopes) of the 

antigens to be detected.  Each instance belongs to a single class 𝑙(𝑢𝑖) ∈ 𝐿, where L represents the set of all classes in 𝑈, denoted 

by 𝐿 = {𝑙1, … , 𝑙𝑘}. Each of these classes is considered as antigenicity-carrying macroprotein.   
 

At initialization phase, the training data input U will be divided into two subsets by stratified hold-out method. EU corresponds 

to the training data denoted as 𝐸𝑈 = {𝑒1, … , 𝑒𝑡}  where 𝑒𝑖 = [𝑒𝑖1, … , 𝑒𝑖𝑚] ∈ 𝑅𝑚, while PU corresponds to an internal validation 

dataset that is denoted as 𝑃𝑈 = {𝑝1, … , 𝑝𝑡}   where 𝑝𝑖 = [𝑝𝑖1, … , 𝑝𝑖𝑚] ∈ 𝑅𝑚. This process is depicted in Figure 1, prior to phase 

one. 

Additionally, a set of antibodies 𝐴 = {𝑎1, … , 𝑎𝑓} will be created and optimized through generations, each antibody is denoted as 

𝑎𝑖 = [𝑎𝑖1, … , 𝑎𝑓] ∈ 𝑅𝑚. During the training antibodies will be adjusted to recognize antigenic determinants of the antigens. The 

pseudocode of the adaptive immune response in the proposed XAIS model is shown below. 

 
Adaptive Immune Response 

Inputs:  Training set 𝑈 
Number of iterations 𝐺 

Number of macrophages 𝑓 
Training percent  𝛼 
Update rate 𝑢𝑟 

Learning rate 𝑙𝑟 
Clones 𝑐𝑙 
Number of adjustments a𝑑𝑗 

Performance metric 𝑀 

Dissimilarity function 𝑑𝑖𝑠𝑠 

Mutation rate 𝑚𝑟 
Mutation Range (min, max) 

Outputs:  Immune memory 𝐼𝑀 

𝑃𝑈 set 
Confusion matrix of PU, 𝐶𝑀 

Initialization: 

▪ Divide the training set U into a training set EU and an internal validation set PU, 

according to the value 𝛼 defined by the user. 

▪ Store 𝑚𝑖𝑛, 𝑚𝑎𝑥 and 𝑚𝑒𝑎𝑛 of each feature in 𝐸𝑈.  
▪ If there are missing values in 𝑃𝑈, impute missing values with 𝑚𝑒𝑎𝑛.  
Phase 1: Detection of antigenic macromolecules 

1. Determine the number of instances needed to represent all the classes (macrophages will 

phagocytose the antigenic determinants of each antigenic macromolecule), as 𝑓𝑐𝑜𝑢𝑛𝑡 =  ⌊
𝑓

𝐿
⌋. 

2. For each class 𝐿𝑖 (macrophage 𝑚𝑎𝑐𝑖): 

2.1. Phagocyte the corresponding antigenic determinants by randomly assigning 𝑓𝑐𝑜𝑢𝑛𝑡  

corresponding instances. 

2.2. Present phagocytosed antigenic determinants to T-Helpers lymphocytes by forwarding 
the list of assigned instances to the merging procedure. 

Phase 2: Activation of B lymphocytes 

3. For each list of assigned instances (T Helper lymphocyte) 𝑙𝑖𝑛𝑓𝑖: 

3.1. Activate the corresponding B-lymphocyte 𝐵𝑖 by applying the merging procedure. 

3.1.1. The B lymphocyte will release an antibody 𝑎̅𝑖 corresponding to the antigenic 

determinants presented by the macrophage 𝑚𝑎𝑐𝑖, by computing the 𝑚𝑒𝑎𝑛 of 

corresponding instances to create a representative prototype. 

3.2. Add the merged prototype 𝑎̅𝑖 to the set of antibodies 𝐴. 

4. 𝑖𝑡 = 0; 
5. While 𝑖𝑡 < 𝐺 
Phase 3. Control of the immune response 

5.1. Evaluate the immune response (fitness) by quantifying the classification 

performance of the antibody set 𝐴 on 𝑃𝑈 set under performance metric 𝑀.  

5.2. Control the immune response by adjusting the prototypes set 𝐴 to detect the 

antigenic determinants instances in 𝑃𝑈 using 𝐴𝑑𝑎𝑝𝑡(𝐴, 𝑃𝑈, 𝑑𝑖𝑠𝑠). 

5.3. If the new set of antibodies produced by the adjustments 𝐴′ = {𝑎′̅𝑖 , … , 𝑎′̅𝑓} has a better 

performance according to 𝑀 than 𝐴, then 𝐴 ← 𝐴′. 
Phase 4. Adaptative immunity 

5.4. For each antibody 𝑎̅𝑖: 

5.4.1. Create 𝑐𝑙 clones.  
5.4.2.  For each 𝑐𝑙 clone: 
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5.4.2.1. Choose which components (attributes) of the clone will mutate based 

on 𝑚𝑟. 
5.4.2.2. Mutate the components of the clones, considering that they will have 

a random mutation increasing or decreasing a value chosen randomly between 

the chosen mutation range and the limits for each attribute. 

5.4.3. Obtain a new antibody 𝑎𝑐̅̅ ̅𝑖 by averaging the parent and all the clones, per 

parent, and add it to 𝐴𝑐. 

5.5. If the new set of antibodies produced by cloning 𝐴𝑐 = {𝑎𝑐̅̅ ̅𝑖 , … , 𝑎𝑐̅̅ 𝑓̅} has a better immune 

response (fitness) than 𝐴, then 𝐴 ← 𝐴𝑐. 

5.6. 𝑖𝑡 = 𝑖𝑡 + 1 
Phase 5. Threat resolution 

6. Store the final set of antibodies 𝐴 in the immune memory, 𝐼𝑀 ← 𝐴. 

7. Store 𝑃𝑈 set. 
8. Store the confusion matrix of 𝑃𝑈 as 𝐶𝑀. 

 

Adjustment of the immune response (𝑨𝒅𝒂𝒑𝒕) 
Inputs:  Antibody set 𝐴 

Test antigens set 𝑃𝑈 

Dissimilarity function 𝑑𝑖𝑠𝑠 
Output: Adjusted antibody set 𝐴’ 

1. 𝑖𝑡 = 0; 𝐴′ = ∅ 
2. While 𝑖𝑡 < 𝐼 

2.1. For each antigenic determinant 𝑎𝑔 ∈ 𝑃𝑈 

2.1.1. Determine the corresponding antibody 𝑐𝑎, which is the closest to the 

antigenic determinant 𝑎𝑔, according to  𝑑𝑖𝑠𝑠(𝑐𝑎, 𝑎𝑔) 
2.1.2. For each component 𝑗 of the antibody 𝑐𝑎 

2.1.2.1. 𝑐𝑎′𝑖𝑗 = {
𝑐𝑎𝑖𝑗 + (𝑙𝑟 ∗ (𝑎𝑔𝑗 − 𝑐𝑎𝑖𝑗)) , if 𝑙(𝑐𝑎) = 𝑙(𝑎𝑔)

𝑐𝑎𝑖𝑗 − (𝑙𝑟 ∗ (𝑎𝑔𝑗 − 𝑐𝑎𝑖𝑗)) , if 𝑙(𝑐𝑎) = 𝑙(𝑎𝑔)
 

2.1.3. Add the modified antibody 𝑐𝑎′ to the set 𝐴’ 

2.2. 𝑙𝑟 = 𝑙𝑟 ∗ 𝑢𝑟 
2.3. Permute 𝑃𝑈 randomly. 
2.4. 𝑖𝑡 = 𝑖𝑡 + 1 

3. Return 𝐴’ 

 

 

3.3.2 Innate Immune Response 

 

The innate immune response consists of a single phase dedicated exclusively to threat resolution: the antibodies stored in immune 

memory are matched against the newly presented instance, and the closest prototype determines its class. Functionally, this process 

is equivalent to performing a prediction step, where the stored antibodies act as the model’s decision structures and the antigen is 

classified as soon as it is presented. The pseudocode of the innate immune response in the proposed XAIS model is shown below. 

 
Innate Immune Response 

Inputs:  Unknown antigenic determinant 𝑑 
Number of desired antigens per decision n 

Boolean value to select if the user wants to see the set used for calibrating 

the algorithm: 𝑠ℎ𝑜𝑤𝑃𝑈 
Boolean value to select if the user wants to see the resulting immune memory 

after calibrating the algorithm: 𝑠ℎ𝑜𝑤𝐼𝑀 

Ouputs:  FPR: False Positive Rate 

FNR: False Negative Rate 

Top-n and Bottom-n antigenic macromolecules for each decision and their 

corresponding distance to diss 

𝐼𝑀 

𝑃𝑈 
Phase 1. Threat resolution 

1. For each antibody in the immune memory 𝑎 ∈ 𝐼𝑀 

1.1. Calculate and store the affinity of said antibody with the unknown instance 

(antigenic determinant), as 𝑎𝑓𝑓𝑎(𝑑) = 𝑑𝑖𝑠𝑠(𝑎, 𝑑), where 𝑑𝑖𝑠𝑠 is the function defined when 
training the algorithm.    

2. For each antigenic macromolecule: 

2.1. Return the top-n and bottom-n antibodies according to their affinity to 𝑑, as well 
as their affinity value. 
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3. Compute and Return the False Negative Rate and the False Positive Rate of the confusion 

matrix 𝐶𝑀.  

4. If showPU then Return 𝑃𝑈 

5. If showIM then Return 𝐼𝑀 

 

 

3.3.3 Explainability 

 

The explainability mechanisms of XAIS operate through two complementary channels that expose both the internal behavior of 

the model and the evidential basis supporting each prediction. The explainability of XAIS is presented in two ways: 

 

(a) Performance-aware transparency 

XAIS preserves the internal validation set (PU) used during training together with its associated confusion matrix, 

computed under the user-selected performance metric. This information enables early detection of systematic biases, 

class-specific weaknesses, or undesirable shifts occurring during antibody adaptation. By making the calibration behavior 

of the model explicitly accessible, XAIS provides a performance-aware transparency layer that is uncommon in 

traditional AIS classifiers. 

 

(b) Prototype-based evidential explanations 

For every unseen instance, XAIS returns the 𝑛 most similar antibodies (top-𝑛) to the query and the least similar ones (bottom-

𝑛), based on the dissimilarity function chosen by the user. These prototype-based explanations are complemented with the 

false-negative and false-positive rates derived from the stored confusion matrix, allowing the user to gauge the reliability of 

each decision path. Through this combination of similarity-driven evidence and performance indicators, XAIS frames each 

prediction within a transparent and contrastive decision space. 

 

These mechanisms position XAIS not merely as an explainable model, but as one aligned with the emerging paradigm of 

evaluative artificial intelligence. According to (Miller, 2023), evaluative AI systems should provide: 

 

(i) Options: XAIS presents, for each class, the top-n candidate antibodies supporting that decision; 

(ii) Judgement support: the model supplies class-specific error profiles (FNR and FPR) that contextualize the 

plausibility of each alternative. 

(iii) Trade-off support: XAIS offers both evidence for and against a hypothesis by returning top-n and bottom-

n similar instances in the antibodies set, enabling users to weigh competing explanations independently of 

their predicted likelihood. 

 

Through this evaluative structure, XAIS delivers explanations that are both evidentially grounded and performance-aware, 

addressing key transparency requirements in biomedical decision-support systems. 

 

4 Results 
 

All classifiers were evaluated under a unified experimental protocol to ensure comparability across datasets. Each dataset was 

assessed using stratified 5-fold cross-validation, preserving class proportions in every split and reducing variability due to 

sampling. No preprocessing, normalization, or previous imputation was applied; this decision was intentional, as it allows the 

evaluation to reflect each model’s intrinsic robustness when confronted with incomplete, noisy, or heterogeneous biomedical 

attributes. 

 

For every fold, models were trained on four partitions and evaluated on the remaining one, and performance metrics were averaged 

across five folds. These aggregated results provide a stable estimate of each classifier’s behavior. All numerical experiments were 

conducted on a standard computing environment using Python and scikit-learn, and the same random seed was applied to ensure 

reproducibility. 

 

Model hyperparameters were tuned manually through an iterative exploration of configurations that balanced stability and 

performance across datasets. For XAIS, the F1-score was adopted as the performance measure 𝑀 guiding the evaluation of 

antibody fitness during the adaptive immune response. The same metric was also employed in the prediction stage of each fold to 

determine the class assigned to test instances, ensuring consistency between prototype optimization and decision-making criteria. 
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The comparative accuracy values for all classifiers across the selected datasets are summarized in Table 2Table 1, while Table 3 

presents the corresponding F1-scores, offering a complementary perspective on performance in the presence of class imbalance. 

Together, these results form the basis for the analysis discussed in the following section. 

 
Table 2. Average accuracies of classification models, AISAC, and XAIS across eight biomedical datasets. Best results are 

highlighted in bold. 

Dataset 
Naive 

Bayes 
MLP 

Decision 

Tree 
kNN SVM 

Random 

Forest 
AISAC XAIS 

Diabetes 88.61 90.59 97.34 78.48 78.61 96.59 82.30 86.50 

Smoking 

Effect on B 

Lymphocytes 

83.54 89.87 73.41 78.48 50.63 79.74 67.00 69.83 

Dermatology 98.08 96.72 92.62 88.79 30.60 97.81 75.40 93.72 

Pima Indians 

Diabetes 
7643 73.30 71.74 70.44 68.09 77.47 67.18 72.14 

Breast Cancer 

Wisconsin 

(Diagnostic) 

97.51 96.61 94.14 97.21 95.90 97.07 96.93 96.93 

Bone Marrow 

Mononuclear 

Cells With 

AML 

84.90 93.90 95.70 92.70 52.70 96.90 86.50 94.00 

Lung Cancer 50.00 46.90 50.00 46.32 40.60 46.90 62.38 71.88 

BCDR 74.58 79.00 72.37 56.35 57.18 80.93 70.27 82.97 

 

  
Table 3. Average F1-scores of classification models, AISAC, and XAIS across eight biomedical datasets. Best results are 

highlighted in bold. 

Dataset 
Naive 

Bayes 
MLP 

Decision 

Tree 
kNN SVM 

Random 

Forest 
AISAC XAIS 

Diabetes 88.61 90.71 97.38 78.55 81.77 96.61 59.47 69.98 

Smoking 

Effect On B 

Lymphocytes 

83.54 89.87 73.40 78.41 34.03 79.74 66.57 69.38 

Dermatology 98.09 96.72 92.53 88.91 14.34 97.81 73.06 93.67 

Pima Indians 

Diabetes 
76.63 73.19 70.65 70.23 67.01 77.12 57.47 69.23 

Breast Cancer 

Wisconsin 

(Diagnostic) 

97.52 96.64 94.10 97.21 95.93 97.07 96.64 96.65 

Bone Marrow 

Mononuclear 

Cells With 

AML 

84.90 93.90 95.69 92.70 36.37 96.89 86.48 93.99 

Lung Cancer 48.30 46.81 51.00 46.32 23.40 46.40 60.48 72.01 

BCDR 74.57 78.99 72.35 56.36 47.41 80.94 70.18 82.95 
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5 Discussion 

 
A distinguishing advantage of XAIS relative to standard ML models is its intrinsic transparency. Because each prediction is 

supported by the top-n and bottom-n antibodies most similar to the input instance, users can directly examine which prototype 

patterns support—or contradict—the final decision. This form of evidence-based explanation aligns the method with current 

expectations for trustworthy AI, particularly in healthcare, where interpretability is a regulatory and ethical requirement rather 

than a secondary feature. 
 
Another notable property of XAIS is its natural compatibility with multiclass and imbalanced datasets. By explicitly representing 

every class through its antibody set, the model preserves minority-class information even when samples are scarce. This mitigates 

the tendency of traditional classifiers to bias predictions toward majority classes, an issue that is especially problematic in 

biomedical domains where minority classes often correspond to clinically critical conditions. 
 
XAIS’s adaptability arises primarily from two user-controlled components: (i) the performance metric M that guides fitness 

evaluation and (ii) the dissimilarity function used to compute antibody–antigen affinity. Selecting M defines the optimization 

objective and directly influences prototype evolution. Metrics such as F1-score or balanced accuracy promote uniform class 

performance, while sensitivity or specificity can bias the learning process toward reducing false negatives or false positives—an 

important consideration for diagnostic tasks. In parallel, the choice of dissimilarity function allows the algorithm to adapt to 

heterogeneous feature spaces by modifying how similarity relations are computed. Together, these two design freedoms provide 

a mechanism for aligning the learning dynamics of XAIS with the structure and requirements of diverse biomedical problems. 
 
XAIS also exposes a broader range of hyperparameters than AISAC, including mutation range, mutation rate, learning rate, and 

update rate. These parameters offer additional control over the exploration–exploitation balance during prototype formation. 

However, this flexibility increases the dimensionality of the hyperparameter search space and may complicate model tuning 

compared with baseline classifiers such as naïve Bayes, which require little or no parameter adjustment. Moreover, because 

prototype construction and mutation depend on iterative refinement, the solution space is large and cannot be explored 

exhaustively, potentially affecting convergence speed in high-dimensional scenarios. Future work should therefore examine 

systematic or automated strategies for selecting metrics, tuning hyperparameters, and adapting mutation dynamics. 
 
The explainability mechanisms embedded in XAIS extend beyond simple traceability. By preserving the internal validation set 

and its confusion matrix under the selected performance measure, users can assess whether certain classes were systematically 

more difficult to model during training. When this information is combined with the top-n and bottom-n prototype lists and their 

affinity values, XAIS provides a richer evaluative framework: the model reveals which prototypes support a given decision, which 

contradict it, and how similar cases behaved historically. These characteristics position XAIS within the notion of evaluative AI 

proposed by Miller (2023), offering explicit options, judgment support, and observable trade-offs for each decision. 
 
Overall, the findings position XAIS as an explainable alternative to black-box classifiers while maintaining competitive 

performance with established machine-learning models and offering methodological advances over prior AIS-based approaches. 

Its capacity to construct meaningful class representations, accommodate complex datasets, and make its decision process 

inspectable makes XAIS a strong candidate for biomedical classification tasks. 

 

6 Conclusions 

 
This work introduced XAIS, an explainable immune-inspired classifier designed to produce compact, discriminative prototype 

representations from heterogeneous biomedical data. The experimental results show that the model is capable of constructing 

stable internal memories for each decision class even in the presence of noise, imbalance, and limited sample availability. In 

contrast with conventional approaches, XAIS provides model-intrinsic explainability by revealing prototype-based evidence that 

supports each prediction, and performance-aware strategies to interpret the model's ability to perform that task, thereby enabling 

users to inspect the rationale behind individual decisions. 
 
XAIS extends previous AIS-based classifiers by permitting the selection of both the fitness metric and the dissimilarity function, 

two elements that directly shape how prototypes evolve and how affinity is computed. This flexibility allows the algorithm to 

adapt to diverse biomedical scenarios, particularly those where class imbalance or overlapping feature distributions challenge the 
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reliability of traditional models. Across the evaluated datasets, XAIS achieved competitive predictive performance while 

maintaining transparent decision pathways consistent with current requirements for trustworthy and explainable clinical AI. 
 
Despite these strengths, the method enlarges the hyperparameter space and relies on iterative refinement procedures whose 

behavior may become sensitive in high-dimensional settings. These characteristics highlight the need for systematic or automated 

strategies for metric selection, hyperparameter tuning, and adaptive mutation control. Future work should also examine how 

different combinations of performance and dissimilarity metrics influence prototype formation in specific biomedical contexts, 

especially in problems where several classes exhibit substantial overlap. Moreover, extending these analyses to broader families 

of immune-inspired architectures may further clarify the advantages of the evaluative mechanisms introduced here. 
 
Overall, the findings demonstrate that XAIS constitutes a competitive and explainable alternative to conventional ML models and 

to existing AIS-based classifiers, offering a principled methodological foundation for interpretable decision-support systems in 

biomedical applications. 
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