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discriminative patterns required for effective classification.
Although modern machine-learning models can achieve strong
performance on such data, many of these approaches operate as
opaque systems, offering little insight into how decisions are
produced—an essential requirement in biomedical applications.
This work introduces the Explainable Artificial Immune System
(XAIS), an immune-inspired classification model that delivers
prototype-based explanations derived from similarity-driven
antibody responses and complemented by performance-aware
indicators, providing users with direct evidential insight into each
decision. XAIS was evaluated on eight publicly available
biomedical datasets using stratified 5-fold cross-validation and
compared against standard machine-learning classifiers. The
results show that XAIS attains competitive predictive performance
while offering structured, instance-level evidential explanations,
underscoring its potential as a transparent and trustworthy
foundation for biomedical decision-support systems.
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1 Introduction

Biomedical data usually proves challenging for computational models, as it often exhibits incompleteness, high dimensionality,
class imbalance, noise, high variance and nonlinear feature interactions. In addition, depending on the clinical scenario, it may be
necessary to handle either scarce samples or very large volumes of data. These properties complicate the extraction of reliable
patterns often requiring specialized computational approaches that can address data heterogeneity, manage uncertainty, and
maintain model interpretability while ensuring clinical relevance and robustness. To address this issue many soft computing
techniques have emerged, showing promising results and great performance in many healthcare applications (Han & Liu, 2021;
Houssein et al., 2023).

Despite the remarkable performance achieved by state-of-the-art Machine Learning (ML) models, their widespread adoption in
healthcare remains limited by the lack of inherent transparency. Most Artificial Intelligence (Al) approaches operate as black
boxes, offering little to no insight into the mechanisms underlying their predictions. This lack of interpretability and transparency
becomes particularly problematic in biomedical applications, where understanding the decision-making process of a model is not
merely desirable but essential for clinical reliability, ethical accountability, and regulatory compliance. The demanding nature of
biomedical data exposes the need for methods that are explicitly engineered to be robust under such conditions while providing
transparent, interpretable reasoning to support reliable clinical decision-making. Consequently, the domain of explainable artificial
intelligence (XAI) has gained increasing prominence, giving rise to methodological frameworks—such as SHAP and LIME—
that attempt to render model behavior intelligible through local or feature-attribution explanations (Audemard et al., 2021; Zhou
et al., 2022).
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This demand for robust and interpretable analytical models has become even more pronounced over the past decade, as the rapid
growth of heterogeneous biomedical data continues to expand both the scale and complexity of biomedical information. Together,
these trends expose a persistent gap: the lack of computational frameworks specifically designed to accommodate biomedical data
complexity while offering the interpretability required in clinical settings.

Among soft computing models Artificial Immune Systems (AIS) stand out, they are bio-inspired computational models grounded
in the biological immune system’s ability to defend the organism through the detection of pathogens and other foreign agents,
develop cell-mediated adaptive responses, and their subsequent capacity to recognize and neutralize threats upon re-exposure
(Aickelin, Dasgupta, et al., 2014). Numerous AIS variants have been developed, most are characterized by principles such as
clonal selection, negative selection, and immune network theory. These models have been successfully applied to anomaly
detection, feature selection, data mining, clustering, classification and optimization tasks (Aickelin et al., 2014; Sotiropoulos &
Tsihrintzis, 2017).

However, as with other Al approaches, most AIS variants behave as black-box systems, whose internal decision pathways remain
difficult to trace, providing limited insight into how prototypes evolve or how affinities are computed. This lack of transparency
presents a significant barrier in sensitive areas such as healthcare and cybersecurity, where interpretability and traceability are
essential due to the high risks associated with misclassification. Recent surveys in AIS research emphasize that both
interpretability and explainability remain as open challenge in AIS, calling for models that either expose their decision-making
logic, integrate explanation mechanisms to support their predictions or provide interpretable outputs (Myakala et al., 2025).

Moreover, the biomedical domain continues to be underexplored within AIS research, with only a few immune-inspired classifiers
tailored to the specific challenges posed by clinical data.

Among the few AIS variants explored in biomedical classification, AISAC stands out as a supervised, prototype-based model that
has demonstrated promising performance across several medical datasets. However, AISAC—Iike most immune-inspired
classifiers—does not incorporate mechanisms for explainability, and its adaptive processes remain opaque, offering no explicit
information linking prototypes and the evidence driving each classification outcome. Consequently, AISAC does not address the
methodological gap identified above: the lack of immune-based models capable of producing clear, clinically interpretable
explanations alongside robust predictive performance (Gonzalez-Patifio et al., 2020).

To address this limitation, we introduce the Explainable Artificial Immune System (XAIS), an immune-based classifier that builds
upon AISAC’s foundational principles while integrating a model-intrinsic explicability. XAIS offers transparency by revealing
the evidence that supports each prediction and by indicating the expected reliability of its decisions through prototype-based and
performance-aware mechanisms. In addition, the model allows users to select key training criteria—such as the dissimilarity
metric used to compute antibody—antigen affinity and the evaluation metric that guides optimization—thereby aligning the
learning process with domain-specific requirements and enabling the model to adapt to the characteristics of each task.

XAIS was validated on several publicly available biomedical datasets and benchmarked against standard machine-learning
classifiers using stratified k-fold cross-validation. The heterogeneity of these datasets allows for a comprehensive assessment of
the algorithm’s robustness and enables a fair comparison under diverse class distributions and data complexities. By structuring
its decisions through similarity-driven prototype selection and a transparent adaptive process learned during training, XAIS
provides an accountable and traceable alternative to traditional classifiers, addressing modern requirements for explainability in
biomedical decision-support systems.

This article is organized as follows. Section 2 reviews related work on Artificial Immune Systems, with emphasis on AIS
approaches for classification and their applications in biomedical contexts. Section 3 details the methodology, including the
datasets, baseline models, and the internal dynamics of XAIS—prototype construction, adaptation mechanisms, and the
mechanisms through which the model provides explainability. Section 4 presents the experimental setup and evaluation
procedures. Section 5 discusses the results, and Section 6 presents the conclusions and outlines potential directions for future
research.
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2 Related Works

2.1 Artificial Immune Systems

Artificial Immune Systems (AIS) are inspired by the biological immune system, particularly by its ability to defend the organism
through the detection of pathogens and other foreign agents, the development of cell-mediated adaptive responses, and the
subsequent capacity to recognize and neutralize the same or similar threats upon re-exposure (Aickelin, Dasgupta, et al., 2014).

2.2 Artificial Immune Systems for Classification

AIS have been widely explored as bio-inspired approaches for optimization and pattern recognition tasks; however, their
application to supervised classification has received comparatively less attention, as many AIS variants were not originally
conceived with classification as a primary objective. This tendency is reflected in several immune-inspired proposals that
emphasize feature selection rather than instance-level prediction (Dudek, 2012; Wang & Li, 2020) underscoring the versatility of
AIS in representation-learning tasks while simultaneously highlighting the scarcity of models tailored specifically for
classification.

Early efforts demonstrated that immune-inspired algorithms could serve as viable alternatives to classical learning paradigms,
particularly in scenarios where robustness and diversity are essential. One of the first AIS specifically designed for classification
was Immunos-81, an abstraction of T-cell and B-cell interactions that models how antibodies respond to antigens. In its original
evaluation on the Cleveland Heart-Disease Dataset, Immunos-81 achieved 83.2% accuracy using 10-fold cross-validation (Carter,
2000), indicating that immune-inspired abstractions could capture discriminative patterns in clinical features. Subsequent work
formalized the clonal selection principle in models such as CLONALG (De Castro & Zuben, 2002), which iteratively refine
candidate solutions through cloning and hypermutation, showing competitive performance on supervised learning tasks.

A major milestone in AIS classification came with the introduction of the Artificial Immune Recognition System (AIRS) (Watkins
& Boggess, 2002). AIRS incorporates artificial recognition balls (ARBs), resource-limitation dynamics and memory-cell
formation, enabling the classifier to generalize effectively from limited data. In two simulated binary-classification datasets, AIRS
achieved 86% and 94% accuracies. Later variants, such as AIRS2, refined cloning and resource allocation mechanisms to reduce
computational cost while preserving accuracy. Further advances extended AIS beyond antibody—antigen interactions. Do et al.,
(2009) proposed AIS-AC, an associative classifier based on clonal selection that integrates rule discovery and classification within
a unified immune framework. Their experiments on datasets such as Adult, Letter, Nursery, Digit and Reuters-R8 reported
accuracies ranging from 76.9% to 98.1%, demonstrating that immune-inspired systems can serve as alternatives to traditional
associative classifiers in high-dimensional or sparse domains.

Altogether, these contributions establish AIS as a family of models capable of competitive classification performance relative to
conventional machine-learning methods, while offering desirable properties such as adaptivity, population diversity, resilience to
noise, and compatibility with high-dimensional data. These characteristics have motivated growing interest in immune-based
strategies as foundations for new classification frameworks, including applications in biomedical contexts.

2.3 Artificial Immune Systems for Classification in Biomedical Data

Biomedical datasets typically exhibit high dimensionality, noise, missing values, and class imbalance; therefore, computational
models must be robust yet flexible enough to accommodate these challenges (Houssein et al., 2023). In this context, AIS-based
classifiers tailored to biomedical data emerge as promising alternatives, as their population-based dynamics, clonal expansion,
and memory selection mechanisms provide great performance while mitigating overfitting by preserving diversity. Early efforts
in this direction, such as the work of Chikh et al. (2012) using AIRS2 and AIRS2-fuzzy-kNN for diabetes classification, reported
accuracies of 82.69% and 84%, showing that immune-inspired processes can achieve competitive results even with limited or
noisy clinical attributes.

More advanced immune models have further strengthened this evidence. AISAC, for instance, builds representative prototypes
through an adaptive response involving macrophage-like aggregation, B-cell activation, prototype adjustment and clonal
refinement. Its associative classification mechanism stores antibody-like prototypes that are iteratively optimized using validation-
driven fitness, moving them closer to instances of their class and away from others. According to its original evaluation, AISAC
achieved competitive or superior accuracy compared to well-established machine-learning methods and other immune-based
classifiers, including AIRS, Immunos and CLONALG, across ten cancer-related datasets. These characteristics make AISAC one
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of the few immune-based classifiers extensively validated on diverse medical datasets, including breast cancer detection tasks,
consolidating the potential of immune-inspired learning in biomedical applications (Gonzéalez-Patifio et al., 2020).

Recent work has also explored hybrid strategies that combine AIS components with classical machine-learning classifiers to
address imbalance and noise. Slimani, (2023), for example, integrated a Negative Selection Algorithm (NSA) with Naive Bayes,
SVM and Logistic Regression for diabetes classification, achieving accuracies between 75% and 84%. These approaches highlight
the growing interest in immune dynamics to enhance predictive reliability in complex settings.

However, despite their performance, most AIS-based classifiers lack built-in explainability. Their decision processes remain
opaque, limiting their suitability for high-stakes settings where traceability is required. Unfortunately, only a few immune-inspired
classification models have incorporated explicit explanatory mechanisms, and these efforts remain isolated within the broader AIS
literature. As a result, explainable AIS methods, particularly those designed for biomedical classification tasks, are still markedly
underexplored, leaving an open research gap for models that can provide both competitive performance and clinically meaningful
explanations. Motivated by this gap, we introduce XAIS, an immune-inspired classifier that builds upon AISAC while
incorporating a redesigned architecture that enables intrinsic explainability and maintains performance.

3 Methodology

3.1 Datasets

The experimental evaluation of XAIS was conducted using eight publicly available biomedical datasets that differ in
dimensionality, class distribution, and clinical context. These datasets were selected to examine the behavior of the proposed
method under heterogeneous conditions, ranging from moderate to high dimensionality and from balanced to markedly
imbalanced class scenarios. The selection covers clinical and diagnostic scenarios related to oncology, dermatology, metabolic
disorders and immunology.

To ensure consistency across experiments, inclusion criteria for datasets were defined as follows: (i) provide a well-defined class
label suitable for supervised classification, (ii) contain numerical-only feature representations (either integer, boolean or floating-
point values), (iii) can have missing values in its features and (iv) be commonly used as benchmarks in biomedical machine-
learning research.

Three of the selected datasets contain missing values within their feature space, reflecting common patterns of incompleteness in
real-world scenarios. In addition, two datasets are considered high-dimensional due to their features being = 1000 and their
relationship with their instance cardinality. A comparative summary of their main dataset characteristics is presented in Table 1.
Additionally, a brief description of each dataset is provided below.

Breast Cancer Wisconsin (Diagnostic)

Breast Cancer Wisconsin Dataset comprises quantitative features extracted from digitized images of fine-needle aspirates (FNA)
of breast masses. The attributes describe the morphological properties of cell nuclei. The dataset is widely used as a benchmark
for binary classification in medical diagnosis and it is available in UCI Repository (Street et al., 1993).

Dermatology

Dermatology dataset was created to address the differential diagnosis of erythemato-squamous diseases, a group of skin conditions
that share many symptoms. Target in the dataset are the six classes that represents the diseases considered in differential diagnosis:
psoriasis, seborrheic dermatitis, pityriasis rosea, chronic dermatitis, lichen planus and pityriasis rubra pilaris. Skin biopsies are
usually required to distinguish between them. Due to its multi-class structure, class imbalance and missing attribute values, it
represents a challenging classification task. Dermatology dataset is available in UCI Repository (Ilter & Guvenir, 1998).

Pima Indians Diabetes

Pima Indians Diabetes is a dataset that belongs to National Institute of Diabetes and Digestive and Kidney Diseases. Comprises
clinical information and measurements collected from female patients of Pima Indian heritage above the age of 21. Since it was
created to diagnose diabetes mellitus, this dataset has been extensively used as a binary classification benchmark, challenging due
to the incompleteness. It is available in Kaggle and previously available in UCI (Smith et al., 1988).
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Bone Marrow Mononuclear Cells with AML.

The dataset consists of gene expression profiles from bone marrow mononuclear cells obtained from 3 patients, one patient
diagnosed with acute myeloid leukemia (AML) and two healthy controls. The samples were generated across three independent
experiments available online in 10x Genomics under the names: AMLO027 pre-transplant BMMCs, Frozen BMMCs (Healthy
Control 1), and Frozen BMMCs (Healthy Control 2) (10x Genomics, 2016¢, 2016b, 2016a).

Smoking Effects on B Lymphocytes

This dataset consists of gene-expression data from peripheral circulating B cells from smoking and non-smoking healthy US white
females. Since smoking-induced diseases are directly associated with B cells, the dataset provides useful information about the
impact of smoking in women (Pan et al., 2010).

Diabetes

The Diabetes dataset contains medical information and laboratory analyses from Iraqi patients who are classified in 3 categories,
non-diabetic, diabetic, and prediabetic. The data was originally acquired by the Laboratory of Medical City Hospital and is
available on Mendeley Data. (Ahlam Rashid, 2020).

Breast Cancer Digital Repository (BCDR)

The BCDR-FO1 subset from the Breast Cancer Digital Repository was used in this study. BCDR is provided by the Faculty of
Medicine of the University of Porto and consists of 362 quantitative descriptors extracted from manually segmented lesions in
digitised film mammograms. These descriptors include morphological measures, boundary-based statistics, and moment-based
features derived from the regions of interest. The subset contains 200 biopsy-confirmed lesions from 190 Portuguese women aged
28 to 82, of which 175 are labelled malignant and 187 benign. Although BCDR is a publicly available resource, full access requires
a data usage agreement (Moura & Guevara Lopez, 2013).

Table 1. Overview of the main characteristics of the biomedical datasets.

Dataset Instances | Features Missing Values Classes | Imbalance Ratio
Diabetes 1000 11 No 3 15.92
Smoking effect on B 79 3000 No 5 1.025
lymphocytes
Dermatolo 366 34 Yes, 6 5.6

gy 8 values, 0.1% )
. . . Yes,

Pima Indians Diabetes 768 8 652 values, 10.6% 2 1.86

Brc?ast Capcer Wisconsin 633 9 No 5 1.85

(Diagnostic)

Bone marrow

mononuclear cells with 1000 1000 No 2 1.11

AML
Yes,

Lung Cancer 32 56 5 values, 0.3% 3 1.44
Yes,

BCDR 362 38 43 values, 0.3% 2 1.06

3.2 Classification Models

To contextualize the performance of XAIS, several well-known machine-learning classifiers were implemented as baseline
models. Each algorithm represents a different inductive bias and learning strategy, providing a diverse comparative framework.

Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes’ theorem under the assumption of conditional independence between
features. Despite its simplicity, it often performs competitively in high-dimensional spaces and serves as a strong baseline for
tabular biomedical data (Domingos & Pazzani, 1997).
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Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is a feed-forward neural network composed of fully connected layers trained via
backpropagation. Its ability to model nonlinear decision boundaries makes it suitable for supervised classification tasks, although
it typically requires careful tuning and sufficient training data (Rumelhart et al., 1986).

Decision Tree

Decision trees partition the feature space through recursively defined axis-aligned splits selected to maximize class purity. Their
interpretability and ability to capture nonlinear relationships make them a widely used baseline in classification studies,
particularly in heterogeneous datasets (Breiman et al., 2017).

k-Nearest Neighbors (kNN)
The kNN classifier assigns a label to a query instance based on the labels of its k-closest neighbors under a predefined distance

metric. As a non-parametric, instance-based method, kNN is sensitive to local structure and provides a complementary perspective
on the dataset (Cover & Hart, 1967).

Support Vector Machine (SVM)

SVM constructs a maximum-margin hyperplane to separate classes, optionally employing kernel functions to project data into a
higher-dimensional space where linear separability is improved. Its stability and strong performance in high-dimensional
biomedical features make it an essential baseline (Cortes & Vapnik, 1995).

Random Forest

Random Forest is an ensemble of decision trees trained on bootstrapped subsets of data and features. By aggregating predictions
through majority voting, it reduces variance and often achieves robust performance on tabular biomedical datasets, especially in
the presence of noise or nonlinearity (Breiman, 2001).

Artificial Immune System for Associative Classification (AISAC)

AISAC is an immune-inspired associative classifier that generates prototype-like antibodies through macrophage aggregation, B-
cell activation, clonal refinement, and validation-driven adaptation. Its compact prototype representation and iterative refinement
mechanism allow it to achieve competitive performance on biomedical classification tasks, making it an appropriate immune-
inspired baseline for comparison (Gonzalez-Patifio et al., 2020).

3.3 Explainable Artificial Immune System (XAIS)

The proposed “eXplainable Artificial Immune System” (XAIS) is an immune-inspired classification model that extends the
conceptual structure of AISAC by redesigning its response dynamics to incorporate intrinsic interpretability. XAIS follows an
eager-learning paradigm: rather than retaining the training set for later classification, it constructs internal data representations—
embodied as antibodies—that replace the original instances during prediction.

XAIS formalizes two complementary computational mechanisms that mirror biological immunity: the acquired immune response,
responsible for prototype-antibodies creation and optimization to represent data as a whole—training stage, and the innate immune
response, which handles the classification of unseen instances through affinity evaluation —predictions stage. Figure 1 shows a
flowchart describing XAIS framework with the innate and acquired responses and its phases.
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Figure 1. Flowchart of the XAIS framework, detailing the phases of the adaptive and innate immune responses.

3.3.1 Acquired Immune Response

The acquired immune response corresponds to the training stage of the classifier and comprises five distinct phases: (i) the
detection of antigenic macromolecules, (ii) the activation of B-lymphocytes, (iii) the regulation of the immune response, (iv) the
development of adaptive immunity via clonal expansion and mutation, and (v) threat resolution through the consolidation of
prototypes in the immune memory.

The biologically inspired response initiates with the detection of antigenic macromolecules by macrophages. Each macrophage
specializes in phagocytosing a specific number of antigenic determinants of the antigenic molecule. These macrophages then
present the antigenic determinants to the T-helper lymphocytes, marking the beginning of the immune response (Phase 1). In
phase 2, these lymphocytes will generate an immune response, activating a certain number of B-lymphocytes. The activated B
lymphocytes will produce and release specific antibodies to the antigens presented by the macrophage. Then, the immune response
will be controlled (Phase 3). If the immune response is satisfactory, the antibodies generated are preserved. If not, a process of
readjustment of the antibodies generated is carried out, so that they can combine with the antigenic determinants presented. The
development of adaptive or acquired immunity (Phase 4) is a meticulous process, where each antibody undergoes reconstitution,
driven by clonal and mutation strategies to improve its immune response. Finally, in Phase 5, antigenic macromolecules are
completely eradicated, and the adjusted antibodies are stored in the immune memory.
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XAIS, as a computational model, require a training set U = {uy, ..., U}, that represents the antigenic macromolecules, where each
instance is represented by u; = [u;q, ..., U] € R™. This set of data constitutes the antigenic determinants (epitopes) of the
antigens to be detected. Each instance belongs to a single class [(u;) € L, where L represents the set of all classes in U, denoted
by L = {l,, ..., [ }. Each of these classes is considered as antigenicity-carrying macroprotein.

At initialization phase, the training data input U will be divided into two subsets by stratified hold-out method. EU corresponds
to the training data denoted as EU = {ey, ..., e} where e; = [ejy, ..., €yn] € R™, while PU corresponds to an internal validation
dataset that is denoted as PU = {p,, ..., p;} where p; = [p;1, ---, Pim] € R™. This process is depicted in Figure 1, prior to phase
one.

Additionally, a set of antibodies A = {al, s af} will be created and optimized through generations, each antibody is denoted as
a; = a1, ..., ar] € R™. During the training antibodies will be adjusted to recognize antigenic determinants of the antigens. The
pseudocode of the adaptive immune response in the proposed XAIS model is shown below.

Adaptive Immune Response

Inputs: Training set U

Number of iterations G
Number of macrophages f
Training percent «a
Update rate ur

Learning rate lIr

Clones cl

Number of adjustments adj
Performance metric M
Dissimilarity function diss
Mutation rate mr
Mutation Range (min, max)

Outputs: Immune memory IM
PU set
Confusion matrix of PU, CM
Initialization:
- Divide the training set U into a training set EU and an internal validation set PU,
according to the value adefined by the user.
- Store min, max and mean of each feature in EU.
. If there are missing values in PU, impute missing values with mean.

Phase 1: Detection of antigenic macromolecules
1. Determine the number of instances needed to represent all the classes (macrophages will

phagocytose the antigenic determinants of each antigenic macromolecule), as feoune = EJ.

2. For each class L; (macrophage mac;) :
2.1. Phagocyte the corresponding antigenic determinants by randomly assigning feount
corresponding instances.
2.2. Present phagocytosed antigenic determinants to T-Helpers lymphocytes by forwarding
the list of assigned instances to the merging procedure.
Phase 2: Activation of B lymphocytes
3. For each list of assigned instances (T Helper lymphocyte) linf;:
3.1. Activate the corresponding B-lymphocyte B; by applying the merging procedure.
3.1.1. The B lymphocyte will release an antibody @; corresponding to the antigenic
determinants presented by the macrophage mac;, by computing the mean of
corresponding instances to create a representative prototype.
3.2. Add the merged prototype @; to the set of antibodies A.
4. it=0;
5. While it<G
Phase 3. Control of the immune response
5.1. Evaluate the immune response (fitness) Dby quantifying the classification
performance of the antibody set Aon PUset under performance metric M.
5.2. Control the immune response by adjusting the prototypes set A to detect the
antigenic determinants instances in PU using Adapt(4,PU,diss).
5.3. If the new set of antibodies produced by the adjustments A’={&Q“",&}} has a better
performance according to M than A, then A< A'.
Phase 4. Adaptative immunity
5.4. For each antibody a;:
5.4.1. Create cl clones.
5.4.2. For each cl clone:
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5.4.2.1. Choose which components (attributes) of the clone will mutate based
on mr.
5.4.2.2. Mutate the components of the clones, considering that they will have

a random mutation increasing or decreasing a value chosen randomly between
the chosen mutation range and the limits for each attribute.
5.4.3. Obtain a new antibody ac¢; by averaging the parent and all the clones, per
parent, and add it to Ac.
5.5. If the new set of antibodies produced by cloning Ac::{ﬁﬁ,m,ﬁﬁ} has a better immune
response (fitness) than A, then A« Ac.
5.6.0t=it+1
Phase 5. Threat resolution
6. Store the final set of antibodies A in the immune memory, IM < A.
7. Store PUset.
8. Store the confusion matrix of PU as CM.

Adjustment of the immune response (Adapt)

Inputs: Antibody set A
Test antigens set PU
Dissimilarity function diss
Output: Adjusted antibody set A’
1. it=0,4=¢
2. While it<I

2.1. For each antigenic determinant ag € PU

2.1.1. Determine the corresponding antibody ca, which 1is the closest to the
antigenic determinant ag, according to diss(ca,ag)
2.1.2. For each component j of the antibody ca

ca;; + (lr * (ag; - caij)), if I(ca) = I(ag)

ca;; — (lr * (ag; - caij)), if I(ca) = I(ag)
2.1.3. Add the modified antibody ca’ to the set A’
2.2. r=lr*xur
2.3. Permute PU randomly.
2.4 0t=it+1
3. Return 4

2.1.2.1. cdy=

3.3.2 Innate Immune Response

The innate immune response consists of a single phase dedicated exclusively to threat resolution: the antibodies stored in immune
memory are matched against the newly presented instance, and the closest prototype determines its class. Functionally, this process
is equivalent to performing a prediction step, where the stored antibodies act as the model’s decision structures and the antigen is
classified as soon as it is presented. The pseudocode of the innate immune response in the proposed XAIS model is shown below.

Innate Immune Response

Inputs: Unknown antigenic determinant d

Number of desired antigens per decision n

Boolean value to select if the user wants to see the set used for calibrating

the algorithm: showPU

Boolean value to select if the user wants to see the resulting immune memory

after calibrating the algorithm: showIM

Ouputs: FPR: False Positive Rate

FNR: False Negative Rate

Top-n and Bottom-n antigenic macromolecules for each decision and their

corresponding distance to diss

IM

PU

Phase 1. Threat resolution

1. For each antibody in the immune memory a € IM

1.1. Calculate and store the affinity of said antibody with the wunknown instance

(antigenic determinant), as aff,(d) =diss(a,d), where diss is the function defined when
training the algorithm.

2. For each antigenic macromolecule:

2.1. Return the top-n and bottom-n antibodies according to their affinity to d, as well

as their affinity value.
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3. Compute and Return the False Negative Rate and the False Positive Rate of the confusion
matrix CM.

4. If showPU then Return PU

5. If showIM then Return IM

3.3.3 Explainability

The explainability mechanisms of XAIS operate through two complementary channels that expose both the internal behavior of
the model and the evidential basis supporting each prediction. The explainability of XAIS is presented in two ways:

(a) Performance-aware transparency
XAIS preserves the internal validation set (PU) used during training together with its associated confusion matrix,
computed under the user-selected performance metric. This information enables early detection of systematic biases,
class-specific weaknesses, or undesirable shifts occurring during antibody adaptation. By making the calibration behavior
of the model explicitly accessible, XAIS provides a performance-aware transparency layer that is uncommon in
traditional AIS classifiers.

(b) Prototype-based evidential explanations
For every unseen instance, XAIS returns the n most similar antibodies (top-n) to the query and the least similar ones (bottom-
n), based on the dissimilarity function chosen by the user. These prototype-based explanations are complemented with the
false-negative and false-positive rates derived from the stored confusion matrix, allowing the user to gauge the reliability of
each decision path. Through this combination of similarity-driven evidence and performance indicators, XAIS frames each
prediction within a transparent and contrastive decision space.

These mechanisms position XAIS not merely as an explainable model, but as one aligned with the emerging paradigm of
evaluative artificial intelligence. According to (Miller, 2023), evaluative Al systems should provide:

@) Options: XAIS presents, for each class, the top-n candidate antibodies supporting that decision;

(ii) Judgement support: the model supplies class-specific error profiles (FNR and FPR) that contextualize the
plausibility of each alternative.

(iii) Trade-off support: XAIS offers both evidence for and against a hypothesis by returning top-n and bottom-
n similar instances in the antibodies set, enabling users to weigh competing explanations independently of
their predicted likelihood.

Through this evaluative structure, XAIS delivers explanations that are both evidentially grounded and performance-aware,
addressing key transparency requirements in biomedical decision-support systems.

4 Results

All classifiers were evaluated under a unified experimental protocol to ensure comparability across datasets. Each dataset was
assessed using stratified 5-fold cross-validation, preserving class proportions in every split and reducing variability due to
sampling. No preprocessing, normalization, or previous imputation was applied; this decision was intentional, as it allows the
evaluation to reflect each model’s intrinsic robustness when confronted with incomplete, noisy, or heterogeneous biomedical
attributes.

For every fold, models were trained on four partitions and evaluated on the remaining one, and performance metrics were averaged
across five folds. These aggregated results provide a stable estimate of each classifier’s behavior. All numerical experiments were
conducted on a standard computing environment using Python and scikit-learn, and the same random seed was applied to ensure
reproducibility.

Model hyperparameters were tuned manually through an iterative exploration of configurations that balanced stability and
performance across datasets. For XAIS, the F/-score was adopted as the performance measure M guiding the evaluation of
antibody fitness during the adaptive immune response. The same metric was also employed in the prediction stage of each fold to
determine the class assigned to test instances, ensuring consistency between prototype optimization and decision-making criteria.
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The comparative accuracy values for all classifiers across the selected datasets are summarized in Table 2Table 1, while Table 3
presents the corresponding F1-scores, offering a complementary perspective on performance in the presence of class imbalance.
Together, these results form the basis for the analysis discussed in the following section.

Table 2. Average accuracies of classification models, AISAC, and XAIS across eight biomedical datasets. Best results are

highlighted in bold.
Dataset Naive | pypp | Decision | \N | sym | Ramdom | yiquc | XALS
Bayes Tree Forest
Diabetes 88.61 90.59 97.34 78.48 78.61 96.59 82.30 86.50
Smoking
Effect on B 83.54 89.87 73.41 78.48 50.63 79.74 67.00 69.83
Lymphocytes

Dermatology | 98.08 | 96.72 92.62 88.79 | 30.60 97.81 75.40 | 93.72
Pima Indians 7643 | 73.30 71.74 70.44 | 68.09 77.47 67.18 | 72.14
Diabetes

Breast Cancer
Wisconsin 9751 | 96.61 94.14 9721 | 95.90 97.07 96.93 | 96.93
(Diagnostic)
Bone Marrow
Mononuclear
Cells With
AML

84.90 93.90 95.70 92.70 52.70 96.90 86.50 94.00

Lung Cancer 50.00 46.90 50.00 46.32 40.60 46.90 62.38 71.88

BCDR 74.58 79.00 72.37 56.35 57.18 80.93 70.27 82.97

Table 3. Average Fl-scores of classification models, AISAC, and XAIS across eight biomedical datasets. Best results are
highlighted in bold.

Dataset Naive | nppp | Decision | N | sym | Random | yyqac | xals
Bayes Tree Forest
Diabetes 88.61 90.71 97.38 78.55 81.77 96.61 59.47 69.98
Smoking
Effect On B 83.54 89.87 73.40 78.41 34.03 79.74 66.57 69.38
Lymphocytes

Dermatology | 98.09 | 96.72 92.53 8891 | 14.34 9781 73.06 | 93.67
Pima Indians | ¢ c1 | 4519 70.65 7023 | 67.01 77.12 5747 | 69.23
Diabetes
Breast Cancer
Wisconsin 97.52 | 96.64 94.10 9721 | 95.93 97.07 96.64 | 96.65
(Diagnostic)
Bone Marrow
Mononuclear
Cells With
AML

84.90 93.90 95.69 92.70 36.37 96.89 86.48 93.99

Lung Cancer 48.30 46.81 51.00 46.32 23.40 46.40 60.48 72.01

BCDR 74.57 78.99 72.35 56.36 47.41 80.94 70.18 82.95
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5 Discussion

A distinguishing advantage of XAIS relative to standard ML models is its intrinsic transparency. Because each prediction is
supported by the top-n and bottom-n antibodies most similar to the input instance, users can directly examine which prototype
patterns support—or contradict—the final decision. This form of evidence-based explanation aligns the method with current
expectations for trustworthy Al, particularly in healthcare, where interpretability is a regulatory and ethical requirement rather
than a secondary feature.

Another notable property of XAIS is its natural compatibility with multiclass and imbalanced datasets. By explicitly representing
every class through its antibody set, the model preserves minority-class information even when samples are scarce. This mitigates
the tendency of traditional classifiers to bias predictions toward majority classes, an issue that is especially problematic in
biomedical domains where minority classes often correspond to clinically critical conditions.

XAIS’s adaptability arises primarily from two user-controlled components: (i) the performance metric M that guides fitness
evaluation and (ii) the dissimilarity function used to compute antibody—antigen affinity. Selecting M defines the optimization
objective and directly influences prototype evolution. Metrics such as Fl-score or balanced accuracy promote uniform class
performance, while sensitivity or specificity can bias the learning process toward reducing false negatives or false positives—an
important consideration for diagnostic tasks. In parallel, the choice of dissimilarity function allows the algorithm to adapt to
heterogeneous feature spaces by modifying how similarity relations are computed. Together, these two design freedoms provide
a mechanism for aligning the learning dynamics of XAIS with the structure and requirements of diverse biomedical problems.

XAIS also exposes a broader range of hyperparameters than AISAC, including mutation range, mutation rate, learning rate, and
update rate. These parameters offer additional control over the exploration—exploitation balance during prototype formation.
However, this flexibility increases the dimensionality of the hyperparameter search space and may complicate model tuning
compared with baseline classifiers such as naive Bayes, which require little or no parameter adjustment. Moreover, because
prototype construction and mutation depend on iterative refinement, the solution space is large and cannot be explored
exhaustively, potentially affecting convergence speed in high-dimensional scenarios. Future work should therefore examine
systematic or automated strategies for selecting metrics, tuning hyperparameters, and adapting mutation dynamics.

The explainability mechanisms embedded in XAIS extend beyond simple traceability. By preserving the internal validation set
and its confusion matrix under the selected performance measure, users can assess whether certain classes were systematically
more difficult to model during training. When this information is combined with the top-n and bottom-n prototype lists and their
affinity values, XAIS provides a richer evaluative framework: the model reveals which prototypes support a given decision, which
contradict it, and how similar cases behaved historically. These characteristics position XAIS within the notion of evaluative Al
proposed by Miller (2023), offering explicit options, judgment support, and observable trade-offs for each decision.

Overall, the findings position XAIS as an explainable alternative to black-box classifiers while maintaining competitive
performance with established machine-learning models and offering methodological advances over prior AIS-based approaches.
Its capacity to construct meaningful class representations, accommodate complex datasets, and make its decision process
inspectable makes XAIS a strong candidate for biomedical classification tasks.

6 Conclusions

This work introduced XAIS, an explainable immune-inspired classifier designed to produce compact, discriminative prototype
representations from heterogeneous biomedical data. The experimental results show that the model is capable of constructing
stable internal memories for each decision class even in the presence of noise, imbalance, and limited sample availability. In
contrast with conventional approaches, XAIS provides model-intrinsic explainability by revealing prototype-based evidence that
supports each prediction, and performance-aware strategies to interpret the model's ability to perform that task, thereby enabling
users to inspect the rationale behind individual decisions.

XALIS extends previous AIS-based classifiers by permitting the selection of both the fitness metric and the dissimilarity function,
two elements that directly shape how prototypes evolve and how affinity is computed. This flexibility allows the algorithm to
adapt to diverse biomedical scenarios, particularly those where class imbalance or overlapping feature distributions challenge the
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reliability of traditional models. Across the evaluated datasets, XAIS achieved competitive predictive performance while
maintaining transparent decision pathways consistent with current requirements for trustworthy and explainable clinical Al.

Despite these strengths, the method enlarges the hyperparameter space and relies on iterative refinement procedures whose
behavior may become sensitive in high-dimensional settings. These characteristics highlight the need for systematic or automated
strategies for metric selection, hyperparameter tuning, and adaptive mutation control. Future work should also examine how
different combinations of performance and dissimilarity metrics influence prototype formation in specific biomedical contexts,
especially in problems where several classes exhibit substantial overlap. Moreover, extending these analyses to broader families
of immune-inspired architectures may further clarify the advantages of the evaluative mechanisms introduced here.

Overall, the findings demonstrate that XAIS constitutes a competitive and explainable alternative to conventional ML models and
to existing AlIS-based classifiers, offering a principled methodological foundation for interpretable decision-support systems in
biomedical applications.
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