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performance, while RT-DETR also produced significant results.
These findings suggested the potential to further improve detection
by exploring result fusion methods. Unlike the original
comparative analysis, this work investigates how integrating the
outputs of multiple detectors can enhance both accuracy and
robustness in firearm identification. The existing literature on
result fusion, as explicitly applied to this field is scarce, leaving a
promising line of research open. In this context, strategies such as
averaging results, selecting the best detector, and time-weighted as
well as real-time weighted methods are analyzed. The objective is
to demonstrate that result fusion represents an effective method for
enhancing the performance of object detection systems in complex
scenarios.

Keywords: firearm detection, YOLOv8, RT-DETR, result fusion,
object detection, robustness.

1 Introduction

Each year, the number of crimes involving firearms has gradually increased. One way to minimize such attacks and pursue and
arrest these aggressors is through the use of surveillance systems, which can provide the necessary evidence for this purpose.
Closed-circuit recording systems are used as security tools, but their response is often slow and prone to errors because humans
monitor them.

In recent years, advances in the field of deep learning and artificial intelligence have enabled the development of highly accurate
and efficient object detection systems in images. These systems are based on algorithms that automatically learn to identify
relevant patterns in images that indicate the presence of these objects. The advantage of these detection systems is that they are
capable of detecting such objects in a wide variety of situations and environments, including low-quality images, poor lighting
conditions, or with foreground objects that may obstruct the view of the image. Moreover, these systems can easily adapt to new
situations and contexts, making them ideal for use in dynamic and ever-changing environments.

The detection of firearms in images is a critical task in public safety and law enforcement, as the presence of weapons in certain
situations can pose a threat to people's safety. In summary, the development of a machine learning or artificial intelligence-based
model for detecting weapons in images is of great importance for both public and private security. These systems allow for
faster and more accurate detection of weapons in images, which can help prevent dangerous and potentially deadly situations.
Firearms were chosen for detection because they are the most commonly used and represent a greater threat due to their ease of
use in mass attacks.

In this context, it is crucial to compare different state-of-the-art object detection models, such as YOLOv8 (VK _Venkatkumar,
2023) and RT-DETR (Ultralytics, 2024), to determine which one offers better results in the specific task of detecting firearms in
images. Both models represent recent advances in the field of artificial intelligence, but they differ in their architectures,
efficiency, and accuracy. Conducting this comparison is especially important because, to date, previous works have not directly
compared these models for this specific task. This research will help identify the model that offers the best performance, thereby
improving the effectiveness of surveillance systems and ultimately increasing public safety.
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Additionally, this work also explores result fusion methods as a complementary strategy to enhance performance. The idea
behind result fusion is that, by combining the outputs of multiple models or detection approaches, it is possible to compensate
for the weaknesses of each method while reinforcing their strengths. This strategy has been successfully applied in other areas of
computer vision, where the fusion of multiple classifiers or detectors has led to more robust and accurate systems. In the context
of firearm detection, the objective is to determine whether the fusion of results between different models can further increase
detection accuracy, reduce false positives, and provide more reliable outcomes in diverse and challenging scenarios.

The motivation behind this research stems from the need to continually improve the technological tools used to prevent and
mitigate the impact of armed violence in society.

A relevant aspect is that, despite the growing interest in firearm detection systems through computer vision, there are few
studies that specifically analyze the use of result fusion methods in this domain. This scarcity presents a significant research
opportunity, as integrating predictions from different models can be crucial to reducing uncertainties and leveraging the unique
strengths of each detector.

Among decision fusion strategies, we consider approaches such as the average of results, the selection of the best detector, as
well as time-weighted and real-time weighted methods, which enable the integration of multiple model outputs more stably and
reliably. Applying these techniques in the context of firearm detection aims not only to increase accuracy, but also to improve
the robustness of the system when facing complex and diverse scenarios.

In this sense, the present work extends beyond model comparison. It introduces a new perspective focused on evaluating how
result fusion can enhance performance in firearm detection, representing a novel and complementary contribution to the
previous study.

In the following sections, the structure of this work is presented to provide a clear roadmap for the reader. Section 2, Concepts
and Previous Work, introduces key concepts related to fusion methods in artificial intelligence and reviews previous studies that
have addressed similar topics, highlighting their approaches and findings. Section 3, Methodology, details the phases of the
proposed methodology, including dataset preparation, preprocessing, model training, and the application of different fusion
strategies. Section 4, Experimentation, describes the implementation of the methodology, explaining how experiments were
conducted and the configurations used. Finally, Section 5, Results, presents the outcomes of the experiments, analyzes the
performance of the fusion methods, and discusses their implications for practical firearm detection scenarios. Finally, Section 6,
Conclusion, summarizes the main findings of this research, and outlines its contributions.

2  Concepts and Previous Work

In artificial intelligence, information fusion (Pereira, Salazar, & Vergara, 2024) refers to the systematic process of combining
data from multiple sources or models to produce a superior output—typically more accurate, robust, or reliable than that derived
from any individual source. This paradigm has delivered notable benefits across various domains, including sensor integration
for autonomous driving, multimodal cognition, medical diagnostics, and object detection. Fusion methods in artificial
intelligence can be classified into different levels depending on the stage at which data or predictions are integrated:
e Data-level fusion: directly combines raw information from multiple sources.
e Feature-level fusion: merges intermediate representations extracted by different models into a joint vector.
e Result-level fusion: integrates the final predictions of several detectors using rules such as averaging, majority
voting, or maximum confidence.
e Decision-level fusion: considers each output as an independent decision and then combines them into a global
decision, using schemes such as best-choice selection, weighted voting, or dynamic strategies.

In this article, the focus is on result-level fusion, employing methods such as result averaging, best detector selection, and time-
weighted and real-time weighted variants, to enhance firearm detection.

An Analysis on Ensemble Learning Optimized Medical Image Classification with Deep Convolutional Neural Networks (Miiller
et al., 2022): This work analyzes the use of ensemble techniques applied to medical image classification, a domain where
accuracy is critical to support clinical diagnoses. The authors compare different model combination approaches, including
bagging, stacking, and aggregation-based methods such as simple and weighted averaging. The results show that stacking stands
out as the most effective strategy, as it enables a more sophisticated integration of information from multiple classifiers, leading
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to significant accuracy improvements. However, the study also highlights that simple statistical methods, such as averaging
outputs, provide highly competitive performance with lower computational cost, making them attractive for practical
implementations in hospital settings. This research demonstrates the utility of ensemble learning in strengthening classification
in medical contexts, where prediction errors must be minimized as much as possible.

A Hybrid Deep Learning Framework with Decision-Level Fusion for Breast Cancer Survival Prediction (Othman et al., 2023):
This article proposes a hybrid deep learning framework for predicting survival in breast cancer patients, in which decision-level
fusion techniques are employed. The approach combines multiple independent classifiers, whose outputs are integrated through
aggregation methods to generate a more reliable final prediction. The research emphasizes that fusion at this level allows
leveraging the strengths of different models while reducing their individual weaknesses, which is especially relevant in clinical
contexts where highly reliable estimations are required. Experimental results indicate significant improvements compared to
particular models, underlining the importance of result fusion as a key resource in developing medical decision support and
diagnostic systems in oncology.

Performance Evaluation of Different Decision Fusion Approaches for Image Classification (Alwakeel et al., 2023): This study
compares various decision fusion methods applied to image classification tasks, aiming to assess how model combination
improves performance compared to the use of individual models. Among the techniques analyzed are logit summation, majority
voting, max/min pooling of outputs, and other aggregation variants. The experiments demonstrate that not all fusion methods
offer the same benefits: for instance, majority voting tends to smooth out errors but does not always accurately capture model
confidence, whereas logit summation leverages probabilistic information more effectively, resulting in superior performance in
most evaluated cases. Furthermore, the study highlights that the effectiveness of each method may vary depending on the dataset
and base architecture, reinforcing the importance of selecting the appropriate fusion technique according to the application
context.

Decision-level fusion detection method of visible and infrared images under low light conditions (Hu, Jing, & Wu, 2023): This
work addresses the challenge of object detection under low-light conditions, where visible images alone have limited
performance. To overcome this difficulty, the authors propose a decision-level fusion method that combines visible and infrared
images, leveraging their complementary characteristics. The detection architecture used as the backbone is YOLOX, which
enables fast and accurate detections in both image modalities.

The article (Ouyang H, 2024) presents DEYO. This real-time object detection model innovatively integrates the DETR
(Detection Transformer) and YOLO (You Only Look Once) architectures. This integration is not limited to a simple
combination of two models. Still, it is carried out through a step-by-step training approach, designed to leverage the strengths of
both methods: DETR’s ability for global and contextual detection, combined with YOLO’s efficiency and speed. This gradual
procedure enables DEYO to overcome several limitations of traditional DETR models, which often require extensive pretraining
on large datasets, such as ImageNet, and exhibit instability during the initial stages of training, particularly when handling
complex object assignments. Regarding fusion methods, DEYO employs a type of architectural and feature fusion, where the
detector’s backbone and neck are initialized with a pretrained detector and then combined with a transformer-style decoder
trained independently in a second stage. This strategy can be considered a form of feature and model fusion, as it integrates the
information processed by YOLO into the DETR framework, achieving more stable, accurate, and efficient real-time detection
without the need for additional datasets or excessive computational resources.

3 Methodology

In Fig. 1, the phases that comprise the methodology developed for analyzing the fusion methods of interest are presented. The
objective of each phase is described next. In the experimentation section, the implementation of this methodology for this study
is explained.
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Fig. 1. Methodology sequence.

Dataset Selection and Preparation:

* A comprehensive search was carried out to identify publicly available datasets that contain images of firecarms under different
conditions (lighting, orientation, occlusion, and background complexity). The goal of this phase was not only to gather a
sufficient number of images but also to ensure diversity and representativeness, which are essential for training robust detection
systems. To achieve this, datasets from various sources were unified into a single collection, with careful review of the
annotation formats to ensure consistency and compatibility across all samples. This step ensures that subsequent training phases
are based on a high-quality and standardized dataset.

Image preprocessing:

* Once the dataset was consolidated, preprocessing was applied to ensure uniformity and enhance the quality of the input
images. In cases where the dataset size was limited, data augmentation techniques such as rotation, flipping, scaling, and
brightness adjustments were employed. These methods increase dataset variability, reduce overfitting, and help the models
generalize better when encountering unseen firearm images in real-world scenarios.

Model training:

» Two state-of-the-art models, YOLOvS8 and RT-DETR, were selected for training due to their proven accuracy and efficiency in
object detection tasks. During this phase, both models were trained on the prepared dataset using optimal hyperparameters
determined through iterative experimentation. The training process was carefully monitored with validation checkpoints to
prevent overfitting and to assess learning progress. The inclusion of two different architectures allows for later exploration of
their complementary strengths, which is essential for the subsequent application of fusion strategies.

Model evaluation and comparison:

* After training, both models were rigorously evaluated using a validation set to quantify their performance. Evaluation metrics
included accuracy, Intersection over Union (IoU), precision, recall, and inference time per image. These metrics provide a
comprehensive understanding of not only how well each model detects firearms but also how efficiently they can be deployed in
real-time applications. A comparative analysis was then performed between YOLOvS and RT-DETR, highlighting their relative
strengths and weaknesses in terms of detection speed, robustness against occlusions, and accuracy in complex backgrounds.

Fusion methods:

* Once the models have produced their predictions, different fusion strategies will be applied to combine their outputs.

* The fusion methods include simple averaging, weighted average over time, real-time weighted average, and selection of the
best result per image.

* These strategies are designed to exploit the strengths of both models, aiming to improve consistency and robustness in firearm
detection.

Analysis of results:

* The results will be analyzed to determine the effectiveness of each model in the specific task of firearm detection.
* Conclusions will be drawn about the applicability of each model in realistic security environments.
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4 Experimentation
Dataset Selection and Preparation:

A thorough search was conducted for public datasets containing firearm images (DASCI, n.d.; Roboflow Universe, n.d.). The
selected datasets were combined to form a consolidated dataset. The final dataset consists of 3,274 images, divided into two
subsets: 2,382 images (72.8%) for training and 892 images (27.2%) for validation. This split ensures fair evaluation and
prevents overfitting because it ensures that the model is trained and fine-tuned on a subset of the data (the training set). At the
same time, its performance is evaluated on a separate set (the validation set) that was not used during training. This helps obtain
a more representative performance metric of how the model will generalize to unseen data. A test set was not used due to data
scarcity. If the available data is limited, splitting it into three sets may reduce the training set size too much. In such cases,
validation is prioritized to fine-tune the model, leaving testing as a future task on an unseen dataset. In some studies, the authors
train and validate their models using their own data but evaluate the final performance using external test datasets. Fig. 2 shows
some images from a dataset.

Fig. 2. Example image of the dataset.

Image preprocessing:

Each image underwent preprocessing, including image enhancement using pipelines and OpenCV, as many images were blurry
or unclear (see Fig.3). Firearms were annotated using a standard annotation format (YOLO format) to ensure compatibility
across models. The images in one dataset have dimensions of 416x416, while those in the other dataset are 1620x1080. The
preprocessing performed included increasing brightness and sharpening all images, as some exhibited a certain level of blur.
Another process applied was data augmentation, which both models use by default through Albumentations, a Python library
designed for applying transformations and augmentations to images, particularly in deep learning tasks such as object detection,
segmentation, and classification. This library enables operations such as rotations, cropping, brightness and contrast
adjustments, blurring, and more, to enhance the robustness of the models.

Fig. 3. Example image of the dataset after increasing the sharpness and clarity.
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Additionally, data augmentation techniques, such as rotations, brightness changes, and cropping, were applied to enrich the
dataset and improve model robustness against image variations (see Fig.4). The models automatically provided data
augmentation, and the user could choose to implement it.
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Fig. 4. Example image of the dataset with albumentations process.

Model training:
e Two state-of-the-art object detection models, YOLOv8 and RT-DETR, were selected and independently trained using
the training set.
e An iterative approach was used during training, adjusting hyperparameters such as learning rate, number of epochs, and
batch size to optimize model performance.
e Loss and accuracy metrics were monitored during the training process to ensure convergence and avoid overfitting.

Training Epoch Selection

Both models were tested using the same number of training epochs. The best results were obtained with:
e 100 epochs for YOLOV8
e 20 epochs for RT-DETR

These values were chosen as the final configurations for presentation in the study.

Model evaluation and comparison:
e  After training, the models were evaluated using the validation set. Key metrics considered were accuracy, Intersection
over Union (IoU), and inference time per image.
e A detailed comparison between YOLOvS and RT-DETR was conducted, focusing on detection speed and accuracy in
identifying firearms. This analysis identified the strengths and weaknesses of each model in practical scenarios.

Fusion methods:

After obtaining the individual predictions from YOLOvVS and RT-DETR, several fusion strategies were applied to combine their
outputs.

The methods used included simple averaging, time-weighted averaging, real-time weighted averaging, and best-result selection.
These fusion approaches aimed to exploit the complementary strengths of both models, improving the robustness of detection
and potentially achieving higher IoU scores compared to individual models.

Analysis of results:

e  The results were thoroughly analyzed to determine the effectiveness of each model in the specific task of firearm
detection. Both qualitative and quantitative analyses were conducted, including visual examples of successful and
failed detections.

e Conclusions were drawn about the applicability of each model in realistic security environments, considering factors
such as accuracy, speed, and implementation complexity.
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To ensure a fair comparison between models or configurations, it is crucial to control variables that can affect performance. In
this case, hyperparameters such as learning rate, batch size, and optimizer were kept constant, ensuring that any difference in
performance is due exclusively to the number of epochs and not to other factors. If other hyperparameters, such as learning rate
or momentum, had been modified, their impact would have mixed, making it harder to interpret the results. In many research
studies, only one factor is varied at a time to assess its impact in isolation. In this case, only the number of epochs was modified

to observe its effect on model convergence and avoid biases caused by other changes.

5 Results

This section presents the results obtained from training and evaluating the YOLOvV8 and RT-DETR models in the task of
detecting firearms in images. The results include key metrics such as mean Average Precision (mAP), Precision, Recall, and the

evolution of losses during training and validation for both models.
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Fig. 5. Results obtained during YOLOVS training for 100 learning epochs.
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These graphs (See Fig. 5, Fig. 6) indicate that the model effectively learned during both training and validation, with consistent
improvements in key metrics such as precision, recall, and mAP, along with a decrease in associated losses.

The data augmentation strategy may cause isolated points, as some transformations can make specific images more challenging
for the model, leading to spikes in validation loss.

Additionally, instability during training, possibly due to the learning rate or other hyperparameters, may contribute to
fluctuations, especially in the early stages of training. These factors will be taken into consideration in future research.

metrics/precision: The model's precision remains high and relatively stable during training, indicating that it accurately predicts
the correct classes.

metrics/recall: The recall, or sensitivity, improves rapidly in the early epochs and then stabilizes, showing good performance in
recovering true positive objects.

metrics/mAP50: The "mean Average Precision" (mAP) with an IoU threshold of 0.50. This value increases quickly and then
stabilizes at a high level, indicating that the model is doing a good job predicting the correct bounding boxes and classes.

5.1 Comparison
Precision and Recall: Both models exhibit competitive performance in terms of precision and recall, with RT-DETR showing a

slight increase in precision at the end of training. However, YOLOvS8 demonstrates superior stability throughout the training
process (see Table 1).

Table 1. Comparison of Precision and Recall between RT-DETR and YOLOVS

Model Precision Recall
YOLOv8 0.99 0.97
RT-DETR 0.97 0.95

The main reason for the performance gap lies in the architectural differences between both models:

RT-DETR uses a transformer-based encoder-decoder architecture with an end-to-end detection mechanism.
e This allows it to learn contextual relationships between objects, which can enhance robustness.
e However, it requires more training iterations to stabilize because the attention mechanism is sensitive to
learning rate and data distribution.
e The observed fluctuations in the precision and recall curves reflect this slower convergence behavior.

YOLOVS, on the other hand, employs a purely convolutional structure with decoupled head layers optimized for real-time
detection.
e Its anchor-free prediction and path aggregation network (PAN) components improve localization and
classification simultaneously.
e This leads to faster convergence, more stable precision and recall curves, and slightly higher performance
metrics overall.

While RT-DETR offers a deeper understanding of object relationships and has strong generalization potential, YOLOVS
achieves higher and more stable precision—recall values due to its efficient convolutional design and extensive optimization for

real-time applications.

mAP: Although both models achieve similar mAP50 values during validation (~0.86), RT-DETR shows more variability in
metrics during the training process, while YOLOv8 maintains a more stable and consistent performance (see Table 2).
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Table 2. Evaluation of Detection Accuracy (mAP) for RT-DETR and YOLOv8 Models

Model mAPS50 mAP50-95
YOLOvVS 1.00 0.89
RT-DETR 0.98 0.86

The superior performance of YOLOVS, particularly in terms of stability and faster convergence, is mainly due to its anchor-
based and convolution-optimized detection architecture, whereas RT-DETR implements a transformer-based anchor-free
detection approach with attention-based decoding.

Key factors explaining the difference: Detection mechanism. YOLOvVS uses an anchor-free approach that allows it to
localize objects directly and efficiently by predicting bounding boxes without relying on predefined anchor points. RT-
DETR, on the other hand, employs an anchor-free strategy that relies entirely on the transformer’s attention mechanism
to learn spatial relationships from scratch, which generally requires more data and longer training time.

Convergence speed and stability: YOLOvVS exhibits a smooth and stable learning curve, quickly reaching mAP50
values close to 1.0. RT-DETR shows more noticeable oscillations, typical of attention-based models, as learning visual
correspondences between regions is inherently more complex.

Generalization capability: While RT-DETR achieves competitive mAP50-95 values, its overall performance is slightly
lower due to higher sensitivity to variations in object scale and the detection of small objects.

YOLOVS, through its Feature Pyramid Network (FPN) and Path Aggregation Network (PAN), enhances multi-scale
detection, leading to better overall performance. The higher and more stable performance of YOLOv8 compared to RT-
DETR is primarily attributed to its optimized convolutional and anchor-free architecture, which enables faster and
more robust convergence.Meanwhile, RT-DETR, by relying on a fully end-to-end transformer-based design, offers
greater theoretical contextual learning capacity, but at the cost of increased computational complexity and reduced
training stability.

Convergence: RT-DETR appears to converge faster in terms of precision and mAP, but its performance is less stable
compared to YOLOv8, which shows a more gradual improvement and greater consistency.

Losses: The losses in both models consistently decrease during training and validation. However, YOLOvVS presents
higher losses (box, cls, and dfl) compared to RT-DETR, which may indicate greater complexity in optimizing this
model.

In summary, YOLOvVS stands out for its stability and consistency during training and validation, making it a robust option for
firearm detection. On the other hand, RT-DETR, while showing competitive performance in precision and mAP, has greater
variability and seems to have less predictable behavior.

Example of Resulting Images:

Fig. 7 shows examples of images obtained with YOLOv8 and RT-DETR.

Fig. 7. Example of images obtained with YOLOv8 and RT-DETR, respectively.
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5.2 Fusion of Results between YOLOvVS8 and RT-DETR

The objective of this stage was to evaluate whether combining the predictions of the YOLOv8 and RT-DETR models could
provide improvements in terms of accuracy, robustness, and suitability in practical scenarios. The various fusion strategies
implemented, along with their justifications, are described below.

e Direct comparison and best model selection. The first strategy involved a direct comparison between YOLOv8 and RT-
DETR, considering key metrics such as precision, recall, mean Average Precision (mAP), and inference time. This
comparison was performed on the same dataset under controlled conditions. The model with the best overall
performance was selected as a baseline for future reference. Although simple, this strategy helps establish a clear and
direct point of comparison. Advantage: enables a clear decision based on objective evidence. Limitation: completely
discards useful information from the second model.

e Simple averaging of results. The second technique evaluated was the simple averaging of predictions from both
models. Detection outputs (bounding boxes, classes, and confidence scores) were combined when they spatially
overlapped (e.g., using IoU > 0.5). Averaging was applied to both the confidence scores and the bounding box
positions. This strategy aims to mitigate individual errors of each model, assuming that their strengths complement
each other. For example, if one model detects small firearms more accurately and the other performs better with larger
ones, averaging could smooth these differences. Advantage: improves robustness against isolated false positives and
false negatives. Limitation: may degrade performance if both models fail in different ways.

e  Weighted averaging based on final performance. In this strategy, a weighted average was implemented, where each
model contributed in proportion to its previously measured overall performance. For instance, if YOLOvVS achieved a
mAP of 0.75 and RT-DETR a mAP of 0.65, YOLOv8 detections received greater weight in the combination. This
technique seeks to capitalize on the strengths of the dominant model without completely discarding the useful
detections of the second one. The weighting was applied to both confidence scores and bounding box positions.
Advantage: balances global accuracy and model diversity. Limitation: Weighting is static, based on previous
evaluations, rather than real-time performance.

e Real-time weighted averaging. The fourth strategy introduced a dynamic variant of weighted averaging, adjusting the
weights in real-time based on the recent behavior of each model. Performance during inference was analyzed
considering factors such as average confidence in the last N detections, prediction stability, and the number of matches
with ground truth annotations (when available). This technique is beneficial in live surveillance systems, where
environmental conditions can change rapidly. For example, if RT-DETR performs better in low-light night scenarios,
the system can adjust its weighting to favor it in that temporary context. Advantage: adaptable to changing
environmental conditions. Limitation: requires greater processing power and continuous monitoring of metrics.

e Best model selection. This strategy consists of selecting, for each prediction instance, the result provided by the model
that demonstrates superior performance among the candidates—in this case, YOLOv8 and RT-DETR. Rather than
averaging or combining the outputs of both models, this method relies on a comparative evaluation, whereby the most
reliable detection is chosen dynamically from the two alternatives. This approach allows BMSelection to consistently
capitalize on the strengths of each model, ultimately leading to an overall performance that surpasses either YOLOVS
or RT-DETR when considered independently.

For the evaluation of the methods proposed in this research, the same dataset specialized in firearm detection in images was
used. This dataset includes a wide variety of scenarios that simulate real surveillance conditions, such as:

e Presence of firearms in indoor and outdoor environments

e Scenarios with one or multiple people

e Variations in lighting

e Different weapon positions
Each image in the dataset contains the necessary annotations in bounding box format, allowing for precise evaluation using
metrics such as precision, recall, and mAP (mean Average Precision).

Although all evaluated methods used precisely the same set of images, the difference lies in how the results generated by each
approach were processed and compared, depending on the methodological focus applied.

Results

In Fig. 8, the graph of averages with respect to the method used is observed, and it can be seen that they are pretty similar,
indicating that the choice of the best method yields a better result.
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Fig. 9 shows a comparative line graph of IoU per image, it can be observed that the methods YOLOv8, RT-DETR,
RTWAverage, WAFinal, SAverage, and BMSelection show values that are pretty close to each other. This suggests that
selecting the best method may lead to a slight improvement in overall results, although the differences are not significantly
pronounced.
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Fig. 9. Comparative line graph of IoU per image.
It is a comparative line chart of IoU results per image, showing how all the evaluated methods behave across the 100 images.
All methods achieve high IoUs (0.85-0.98) in most images. This means the models are comparable in overall performance.
There is no clear “loser” on average.

There  are  specific  drops in  certain  images (e.g., between 20-30, 50-60, and  70-80).

Here we can see differences between models:
e  YOLOVS shows a sharp drop around image ~22.
e RTWAverage and WAFinal show notable drops at other points.
e RT-DETR seems more stable, although it also fluctuates.

This indicates that the models do not fail on the same images—each has strengths and weaknesses.
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The “SAverage” and “BMSelection” lines are more stable:
e They stay higher and show fewer peaks.
o This makes sense because they represent an “average” or “best case,” which smooths out individual
variations.

Direct comparison between YOLOvS and RT-DETR:
e Both follow very similar curves.
e But there are images where one is clearly better than the other (point advantage).

Fig. 10 shows a correlation heatmap between detection methods.
Correlation between methods (loU)
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RT-DETR -0.950
-0.925
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-0.900
WAFinal
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I
YOLOv8 RT-DETR RTWAverage WAFinal SAverage BMSelection

Fig. 10. Correlation heatmap between detection methods.

Correlation heatmap between different detection/evaluation methods (measured with IoU, Intersection over Union).
Each cell represents the correlation between two different methods. Values range from -1 to 1:

* 1 = perfect correlation (both methods vary in the same way).

* 0 = no linear relationship.

* -1 = perfect inverse correlation.

The color scale goes from blue (low correlation ~0.8, in your case the minimum) to red (high correlation close to 1).
On the diagonal (from top left to bottom right), the value is always 1, because each method is perfectly correlated with itself.
YOLOvVS and SAverage (0.90) — highly correlated, meaning that when YOLOVS has a good IoU, SAverage does too.
YOLOvS8 and RT-DETR (0.50) — low correlation, meaning that sometimes one works well while the other does not; their
results do not always align.

WAFinal and SAverage (0.92) — highest correlation, suggesting these two methods measure very similar things.
BMSelection and RT-DETR (0.82) — good relationship, though not the highest.
Overall, most correlations are between 0.7 and 0.9, indicating that the methods tend to agree, except for some combinations,
such as YOLOv8-RT-DETR, which show notable differences.

5.3 Statistical Evaluation: Friedman and Holm Tests
To ensure that the differences between the models and the fusion techniques were not due to chance, rigorous statistical tests

were conducted, specifically the Friedman test followed by the Holm correction (Pereira et al., 2015). These tests allow for
validating whether the improvements obtained in the experiments are statistically significant.
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Friedman Test
The Friedman test is a non-parametric test used to compare three or more methods across multiple datasets. It is based on
ranking the models instead of their absolute values, which makes it ideal in contexts where data normality cannot be assumed. In
this work, the Friedman test was used to compare the performance of the following configurations:

e YOLOVS
RT-DETR
Simple average
Weighted averaging based on final performance
Real-time weighted averaging
Best model selection

Each configuration was evaluated on multiple images and test scenarios, generating a set of rankings per trial. The null
hypothesis of the test states that all methods have the same average performance. Rejecting this hypothesis confirms that there
are significant differences among at least some of the evaluated methods.

Holm Correction
Once the Friedman test detects significant differences; it is necessary to conduct multiple pairwise comparisons to identify
which methods differ significantly from one another. However, performing multiple comparisons increases the risk of
committing type I errors (false positives).

To control this risk, the Holm correction was applied, an adjusted method that allows multiple comparisons without
compromising statistical validity. Holm is an improvement over the Bonferroni method and works by sequentially adjusting the
p-values of pairwise comparisons.

In this research, fusion techniques were specifically compared against individual models. The Holm correction provided
statistical evidence that fusion strategies based on selecting the best result offered significant improvements over individual
models in terms of mAP and correct detection rate.

Relevance of Statistical Tests

The combined use of Friedman and Holm strengthens the analysis since
*Friedman  evaluates  overall  differences  between  methods  without  assuming  normal  distribution.
* Holm enables controlled pairwise comparisons, reducing the risk of misinterpretations due to multiple testing.

Thanks to these tests, it was possible to strongly support that fusion by selecting the best not only showed empirical
improvements but also statistically significant differences, justifying its adoption as the preferred approach for dynamic

surveillance scenarios involving firearm detection.

Fig. 11 shows results obtained by applying the Friedman and Holm tests. Each box represents the variability of the ranking
assigned to each method, while the red values indicate the mean ranking.
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Fig. 11. Results obtained by applying the Friedman and Holm tests.

In the figure Fig.11, the methods YOLOv8, RT-DETR and fusion techniques (RTWAverage, WAFinal, SAverage,
BMSelection) are compared. The metrics shown correspond to average performance values along with their dispersion.
YOLOvVS8 (0.940) and RT-DETR (0.935) are the individual baseline models. As observed, YOLOvVS8 achieves superior
performance on its own. However, the fusion techniques also obtain competitive results: for instance, BMSelection reaches the
highest value (0.950), even surpassing YOLOVS. Other fusions (RTWAverage and WAFinal with 0.920, SAverage with 0.930)
exhibit intermediate performances, suggesting that not all fusion strategies are equally effective.

In general, the null hypothesis in this type of analysis with Friedman is that there are no significant differences among the
compared methods. In this case, the null hypothesis can be rejected, since BMSelection and YOLOvS8 show apparent differences
compared to methods such as RTWAverage or WAFinal.

6 Conclusion

After comparing the results of the YOLOv8 and RT-DETR models in firearm detection in images, it is concluded that YOLOVS
has demonstrated superior performance in several key areas. YOLOVS not only achieved higher precision (mAP) but also
showed better metrics in terms of precision and recall throughout the various training epochs. The model achieved rapid
convergence, resulting in a significant reduction in losses (box loss, cls loss, dfl loss) in both the training and validation sets.

On the other hand, RT-DETR, although competitive, did not reach the same levels of efficiency and precision as YOLOv8. RT-
DETR’s metrics indicated greater variability in precision and recall, as well as slower and less stable convergence compared to
YOLOVS.

In summary, YOLOv8 stands out as the most robust and effective option for firearm detection in images within this specific
context. Its ability to maintain a high level of accuracy and speed in detection makes it the preferred tool for security
applications where both speed and accuracy are crucial.

Experimentation with fusion techniques revealed that the intelligent combination of models can outperform the individual
performance of each one in specific scenarios. While direct comparison helps establish a baseline model, fusion strategies—
especially the best-result selection—offer a promising path to enhance robustness and accuracy in critical systems such as real-
time firearm detection. The choice of the ideal fusion technique will depend on the application context: in a live monitoring
system, real-time weighting may be the most effective option; for batch analysis, the classic weighted average may be sufficient.

161



Montes Lorenzo et al. / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 148-162.

As firearm detection through deep learning techniques continues to be explored and improved, significant opportunities to
advance this area have become evident by integrating new approaches and technologies.
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