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images. The approach integrates state-of-the-art models, employing
DETR (Detection Transformer) for the generation of bounding
boxes corresponding to candidate text sequences, and TrOCR for
transcribing the text contained within these regions. Both models
were fine-tuned on a proprietary dataset comprising handwritten and
digitized notes from mathematics-related subjects, including
differential equations, calculus, linear algebra, programming, etc.
The dataset predominantly consists of mathematical expressions
represented in LaTeX format, thereby allowing the proposed
method to effectively address the recognition of complex symbolic
content in mathematical texts.
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1 Introduction

Optical Character Recognition (OCR) (Chaudhuri et al., 2016) is one of the most widely studied yet challenging tasks in the field
of computer vision. It typically involves two subtasks: text detection (i.e., locating textual regions) and character recognition.
While these processes are intuitive for humans, they remain difficult for computers, which lack the ability to perceive images
holistically. Instead, computational models must rely on processing pixel values and derived features such as color, position, and
orientation, which can be mathematically represented as matrices of numerical values.

To address these challenges, a variety of mathematical and statistical algorithms have been proposed, including projection
profiling (Javed et al., 2013), feature extraction and classification techniques (Mutlag et al., 2020), and hidden Markov models
(Mor et al., 2020). Although effective to some extent, these methods were eventually surpassed by artificial intelligence
approaches. Deep learning models such as recurrent neural networks (RNNs) (Mienye et al., 2024) and convolutional neural
networks (CNNs) (Li et al., 2022) significantly advanced OCR performance by integrating feature learning into end-to-end
frameworks. Despite their success, these architectures were later outperformed by Transformer-based models, first introduced by
Google in 2017 (Vaswani et al., 2017). This architecture, through its self-attention mechanism, enables efficient sequence
modeling and the extraction of richer contextual features, thereby achieving superior results compared to RNNs and CNNs.

More recently, transformer-based architectures have demonstrated state-of-the-art performance across a variety of vision tasks.
For example, the DETR (Carion et al., 2020) model focuses on general object detection, including people, vehicles, facial
expressions, traffic signs, and animals, while TrOCR (Li et al., 2021) has been developed specifically for printed and scene text
recognition, with applications in domains such as signage and advertisements (Raisi, 2021). A limitation of these models, however,
is that most are pretrained predominantly on English-language datasets. As a result, their performance often degrades when applied
to text in other languages, leading to inadequate information extraction or unintended translation into the training language.

In this study, we assess the performance of state-of-the-art transformer-based models in specialized OCR tasks. We fine-tuned
models from the DETR family on a custom, hand-labeled dataset and compared their performance to a YOLO-family models
trained under identical conditions, to evaluate the effectiveness of transformer architectures for detecting words, mathematical
expressions, and drawings in digitized handwritten notes. Additionally, we fine-tuned models from the TrOCR family and Nougat-
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based architectures for handwritten, script, and cursive text recognition, emphasizing the unique challenges associated with these
tasks.

2 State of the art

In this study, we conducted a review of contemporary models for text detection and recognition. Based on this assessment, we
selected a set of representative and recently proposed object detection architectures, namely DETR, RT-DETR, Deformable-
DETR, YOLOVS8, and YOLOV11. For the text extraction and recognition component, we employed models from the TrOCR and
Nougat families. These models were chosen due to the availability of multiple pre-trained and task-specific variants, as well as
their capacity to accommodate broad and diverse vocabularies.

2.1 DETR

The DEtection TRansformer (DETR) introduces a new paradigm in object detection by reformulating the task as a direct set
prediction problem. This formulation eliminates the need for traditional handcrafted components such as anchor boxes, region
proposals, and non-maximum suppression, thereby simplifying the detection pipeline. DETR combines a convolutional backbone
with a Transformer-based encoder—decoder architecture, enabling fully end-to-end training and inference within a unified
framework. The model employs a convolutional neural network (CNN), typically ResNet-50 or ResNet-101, to extract a low-
resolution feature representation from the input image. These features are subsequently flattened and linearly projected into an
embedding space before being processed by the Transformer encoder. The encoder leverages multi-head self-attention
mechanisms to capture global contextual relationships (see Figure 1) among all regions of the image, facilitating non-local
reasoning that enhances object differentiation and localization.
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Figure 1. DETR model architecture

The Transformer decoder operates on a fixed set of learned embeddings, known as object queries, each representing a potential
object in the image. Through a combination of self-attention and encoder—decoder attention, the decoder iteratively refines these
queries by integrating information about inter-object dependencies and global scene context. Each decoder output is then passed
through a shared feed-forward prediction network, which estimates the object’s class label and corresponding bounding box
coordinates, normalized relative to the image dimensions. Predictions that do not correspond to any ground truth instance are
assigned to a dedicated “no object” class, ensuring a consistent and comprehensive set of outputs.

2.2 RT-DETR

The Real-Time Detection Transformer (RT-DETR) is a Transformer-based end-to-end object detector capable of real-time
performance. Its architecture comprises a ResNet backbone, a hybrid encoder, and a transformer decoder. The backbone extracts
hierarchical features, from which the last three stages are passed to the encoder. To overcome the computational bottlenecks of
the traditional DETR model architecture, RT-DETR introduces an efficient hybrid encoder that decouples intra-scale and cross-
scale processing (see Figure 2). Specifically, the Attention-based Intra-scale Feature Interaction (AIFT) applies self-attention only
to high-level semantic features, while the CNN-based Cross-scale Feature Fusion (CCFF) integrates multi-scale information
through convolutional fusion blocks, thereby reducing latency while preserving accuracy. It also introduces an uncertainty-
minimal query selection strategy, which improves conventional query initialization methods that relied solely on classification
scores. The model simultaneously integrates classification and localization confidence, thereby minimizing epistemic uncertainty
and supplying the decoder with higher-quality queries. This leads to improved convergence and enhanced detection accuracy.
Subsequently, the decoder iteratively refines these queries to predict class labels and bounding boxes, while auxiliary prediction
heads contribute to training stability by regularizing the model’s weights.
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As reported in the article by the authors, the experimental results underscore the effectiveness of the proposed architecture. On
the COCO dataset, RT-DETR-R50 achieved 53.1% AP at 108 FPS, while RT-DETR-R101 reached 54.3% AP at 74 FPS,
surpassing YOLOv7 and YOLOvV8 models of comparable scale. Furthermore, when compared to DINO-Deformable-DETR-R50
(Zhang et al., 2022), RT-DETR obtained a 2.2% improvement in AP. These findings demonstrate that RT-DETR successfully
addresses the limitations of previous DETR variants and establishes a new state-of-the-art in real-time object detection.
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Figure 2. RT-DETR model architecture

2.3 Deformable-DETR

Deformable DETR (Zhu et al., 2021) introduces an improved end-to-end object detection framework that addresses the primary
limitations of the original DETR model, namely its slow convergence and reduced accuracy in detecting small objects. The model
enhances the Transformer architecture through deformable attention modules, which constrain attention to a sparse set of
informative sampling points around reference locations. This design substantially reduces computational complexity, accelerates
convergence, and improves detection accuracy while maintaining the Transformer’s capability to model global contextual
relationships.

The architecture (Figure 3) preserves the encoder—decoder structure of DETR, employing a convolutional backbone to extract
multi-scale feature maps from the input image. These hierarchical features are processed by a deformable Transformer encoder,
where each deformable attention module aggregates information from a small number of spatially adaptive sampling points rather
than all positions in the feature map. By concentrating on the most relevant regions, the model achieves linear computational
complexity with respect to image resolution, allowing efficient processing of high-resolution inputs.
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Figure 3. Deformable DETR model architecture
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The encoder generates multi-scale contextual representations that are subsequently refined by the Transformer decoder, which
incorporates both self-attention and cross-attention mechanisms. The cross-attention modules utilize deformable attention to
integrate image features from the encoder, while the self-attention modules capture dependencies among object queries. Each
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query corresponds to a potential object, and successive decoder layers progressively refine these representations to predict object
categories and bounding box coordinates relative to their reference points.

2.4 YOLOvS

The architecture of YOLOVS (Yaseen, 2024) adheres to the classical backbone—neck—head structure, incorporating several design
optimizations (see Figure 4) that enhance both efficiency and accuracy. The backbone, built upon an advanced Cross Stage Partial
Network (CSPNet), effectively extracts hierarchical features by minimizing computational redundancy and improving gradient
propagation. This design enables the model to capture both low-level spatial details and high-level semantic information, which
are crucial for precise object detection.

The model integrates a refined combination of the Path Aggregation Network (PANet) and the Feature Pyramid Network (FPN),
facilitating efficient multi-scale feature fusion. This configuration strengthens the model’s capability to detect objects of varying
sizes, particularly small or densely distributed instances. The detection head adopts an anchor-free paradigm, replacing the
predefined anchor boxes used in earlier YOLO (Redmon et al., 2015) versions. By directly predicting object centers, dimensions,
and classes, this design simplifies training, reduces hyperparameter dependency, and enhances adaptability to diverse object
shapes and aspect ratios.
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Figure 4. YOLOv8 model architecture

Additional architectural improvements include optimized feature aggregation layers, which enhance computational efficiency and
reduce memory consumption, achieving an effective balance between detection speed and accuracy across different hardware
configurations.

2.5 YOLOv11

YOLOvI1 (Khanam & Hussain, 2024) is the most recent version of the YOLO family of object detectors and introduces
architectural refinements that enhance efficiency, accuracy, and versatility across a wide range of computer vision tasks. The
model retains the classical backbone—neck—head pipeline but incorporates innovations that distinguish it from its predecessors. In
the backbone, feature extraction is improved through the C3k2 block, a lightweight variant of the CSP bottleneck that replaces
large kernels with smaller convolutions, thereby reducing computational cost while preserving representational capacity. This
stage also integrates the SPPF (Spatial Pyramid Pooling — Fast) module, which accelerates multi-scale feature aggregation, and
the C2PSA (Cross Stage Partial with Parallel Spatial Attention) block, which enhances spatial awareness by directing attention
toward salient regions, improving the detection of small or occluded objects. The model’s architecture is shown in Figure 5.

Within the neck, multi-scale features are fused using C3k2 blocks, improving computational efficiency while maintaining

accuracy, while the inclusion of C2PSA attention further strengthens the model’s ability to focus on relevant regions. The head
refines predictions through stacked C3k2 modules that adapt flexibly between lightweight and deeper feature extraction, supported
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by CBS (Convolution—BatchNorm—SiLU) layers that stabilize training. The final detection layers produce bounding boxes, class
probabilities, and objectness scores.

These architectural enhancements collectively provide several key improvements. The C3k2 block reduces the number of
parameters and accelerates inference, while the C2PSA mechanism improves robustness in complex detection scenarios.
Furthermore, YOLOv11 extends beyond conventional object detection to support additional tasks such as instance segmentation,
pose estimation, oriented bounding box detection, classification, and tracking, consolidating its role as a versatile and multi-
purpose vision model.
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Figure 5. YOLOv11 model architecture
2.6 TrOCR

TrOCR is an end-to-end optical character recognition (OCR) model that departs from conventional convolutional and recurrent
architectures by adopting a purely Transformer-based encoder—decoder design. The encoder employs a Vision Transformer that
resizes the input image, partitions it into fixed-size patches, and projects them into embedding vectors, which are then processed
through self-attention mechanisms without relying on convolutional inductive biases. The decoder is a standard Transformer that
autoregressively generates subword tokens, integrating the encoder’s visual features with contextual information from previously
decoded outputs (see Figure 6). This design eliminates the need for external language models and character-level decoding, thereby
simplifying the transcription pipeline.
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Figure 6. TrOCR architecture

[J[s][czos1]

A central innovation of TrOCR is its initialization strategy: the encoder is initialized with pre-trained vision models such as DeiT
or BEIiT, while the decoder is initialized with pre-trained language models such as RoBERTa or MiniLM. This multimodal
initialization leverages large-scale pre-training in both vision and language domains, providing robust priors for visual
representation and linguistic modeling. Training was conducted in two stages, beginning with large-scale pre-training on synthetic
text-line images, followed by task-specific pre-training for printed, handwritten, or scene text.
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2.7 Nougat

Nougat (Blecher et al., 2023) presents a transformer-based architecture developed to convert document images, particularly
scientific PDFs, into machine-readable markup text. Built upon the Donut framework (Kim et al., 2022), it employs a fully end-
to-end encoder—decoder design that removes the need for external OCR systems or embedded text extraction, enabling direct
processing of both digital-born and scanned documents from rasterized images.

The architecture (Figure 7) consists of two main components: a visual encoder and a text decoder. The encoder is based on the
Swin Transformer, a hierarchical vision transformer that divides the input image into non-overlapping windows and applies multi-
head self-attention both within and across these regions to capture local and global visual dependencies. This process yields a
sequence of latent embeddings representing the document’s visual structure. The decoder, adapted from the mBART architecture,
autoregressively generates structured markup text by employing self-attention to preserve contextual coherence and cross-
attention to align textual predictions with corresponding visual features from the encoder output. The final output consists of
tokenized markup sequences encompassing plain text, mathematical expressions, and tabular elements.

Example

This is an abstract. Lorem
ipsum dolor sit amet,

Swin Transformer Transformer Decoder
consectetur adipisicing elit,

sed do ciusmod tempor

incididunt ut labore et dolore

magna aliqua.

Figure 7. Nougat model architecture

Nougat introduces several key advancements over traditional OCR-based systems. By eliminating handcrafted OCR components,
it enables end-to-end learning of document semantics, capturing spatial and structural relationships essential for accurately
representing mathematical notation.

3 Methodology

3.1 Dataset creation

Given the specific objective of developing a model capable of recognizing handwritten scientific text in Spanish, a custom dataset
was manually constructed, as existing public resources available on platforms such as Kaggle, Hugging Face, and Google Datasets
proved inadequate for this task. Most existing datasets are restricted to cropped LaTeX equations, which are suitable for optical
character recognition (OCR) tasks but insufficient for object detection models, such as DETR, that require precise positional
information to localize and classify multiple elements within an image. To overcome these limitations, a new dataset was
assembled using digitized handwritten personal notes that include a diverse combination of textual content, LaTeX expressions,
and graphical elements such as geometric figures, function plots, and schematic diagrams.

The final dataset comprises 625 images, each containing a variable number of annotated objects, distributed across three
categories: LaTeX expressions, text regions, and image or drawing elements. Every element, whether a handwritten word, a
mathematical formula, or a graphical shape, was annotated with a bounding box and a corresponding label (Figure 8). During
annotation, spelling errors were corrected, but diacritical marks were intentionally omitted to maintain consistency with standard
handwritten inputs. This process yielded a total of 28613 annotated elements across all classes.
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Figure 8. Text (dark pink, yellow), graph (light green) and LaTeX (remaining) annotation examples

As only three labels (“text”, “latex”, and “image”) were defined for the bounding box annotations, an additional step was
introduced to assign textual values to cropped elements. Specifically, “text” and “latex” regions were annotated with their
corresponding transcriptions or LaTeX code, while “image” elements were left unlabeled, as they were intended exclusively for
later reintegration into LaTeX documents during data reconstruction.

To facilitate and streamline the annotation process, a web-based annotation platform (Figure 9) was developed. This tool enables
the creation, visualization, and editing of bounding boxes in real time and integrates a live LaTeX rendering module to verify the
accuracy of the annotated code. The platform supports the three defined categories—text, LaTeX, and image—and restricts entries
to standard LaTeX syntax, excluding external packages or formatting variations such as font size or alignment, thus ensuring
uniformity and reproducibility across annotations.
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To accelerate dataset generation, once enough samples had been labeled, preliminary fine-tuned versions of RT-DETR and TrOCR
models were employed to assist in the semi-automatic annotation process. Although these models exhibited difficulties in
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detecting or transcribing elements in low-resolution or previously unseen data (Figure 10), their integration significantly reduced
the time required to complete the dataset compared to a fully manual workflow.
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Figure 10. Results obtained with preliminéry finetuned models

Mark as completed

After completing the annotation process, the dataset was divided into subsets for object detection and OCR-related tasks.
Specifically, 500 images, comprising a total of 26253 bounding boxes, were allocated for training DETR and YOLO-based
models, while the remaining 125 images were reserved for validation. For sequence recognition models such as TrOCR and
Nougat, the data were further partitioned into 19573 samples for training and 8389 for validation. The resulting dataset
composition metrics for each subset are summarized in Table 1.

Table 1. Datasets metrics

Object Detection OCR

Train images 500 19573

Validation images 125 8389
Train annotations 26253 --
Valid annotations 2360 --

Train text object elements 17289 12763

Valid text object elements 592 5434

Train LaTeX object elements 8476 6810

Valid LaTeX object elements 1668 2955
Train image object elements 488 --
Valid image object elements 100 --

3.2 Experimentation phase and data preparation

Preliminary experiments were carried out using a collection of handwritten mathematical notes to evaluate the baseline
performance of existing object detection and text recognition models. In the object detection task, both evaluated model families
failed to identify relevant elements within the images. This outcome is largely attributed to the nature of their pretraining datasets,
which predominantly consist of natural or everyday objects, such as vehicles, animals, and household items, rather than fine-
grained components like handwritten characters or mathematical symbols. Consequently, the models were unable to generalize to
the structural and spatial characteristics of scientific handwriting.

In terms of text extraction, the TrOCR models produced largely inaccurate textual sequences when applied to handwritten samples

in Spanish. Given that their pretraining data primarily comprised English-language text, the models exhibited a strong bias toward
English output, frequently generating words and characters inconsistent with the input. Although their performance improved
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when tested on English samples, persistent errors were observed in the transcription of LaTeX expressions, particularly in symbol
recognition and the generation of syntactically valid LaTeX code. Figure 11 shows an example input image for TrOCR-large-
stage-1 and TrOCR-large-handwritten for which both models generated an empty output.

r‘f,pVC’fjﬁfﬂLQ

Figure 11. Example image used prior experimentation phase for TrOCR-family models

The Nougat models demonstrated comparatively better performance in the extraction and generation of LaTeX, particularly when
using the fine-tuned LaTeX-specific version. Nonetheless, errors remained in the extraction of textual content, primarily due to
the model’s limited exposure to Spanish-language data. Moreover, Nougat consistently misinterpreted textual elements as
mathematical expressions, attempting to encode them as LaTeX formulas or equations. Figure 12 shows an example of LaTeX
input image for the base Nougat model. As output, the model generated a partially correct answer.

247723

Figure 12. Example image used prior experimentation phase for Nougat-family models
Answer generated: '<s>\Rightarrow \mathbb{Q} \leq \{\sqrt{ \pi}} \leq ,3</s>"'

When employing the base (vanilla) versions of the models, including the non-fine-tuned TrOCR variants, performance
deteriorated significantly. These models were unable to accurately extract or reconstruct any meaningful textual or LaTeX
sequences from the dataset, confirming the necessity of task-specific fine-tuning and the inclusion of language-diverse handwritten
data for effective recognition in this domain.

Prior to the experimentation phase, the computational environment was configured using Python 3.11 as the primary programming
language. An external hard drive was utilized as the main storage medium for the training datasets, model checkpoints, and

performance logs. The hardware components of the machine are summarized in Table 2.

Table 2. Hardware specifications

Hardware Specification
Motherboard ASUSTeK PRIME Z370-A
CPU Intel i7-8700K(12)@4.700GHz
RAM 64 GB — DDR4
Storage My Passport SSD 1TB
GPU NVIDIA GeForce RTX 4090 24 GB

NVIDIA GeForce RTX 5060 TI 16 GB

To establish the baseline hyperparameters for model fine-tuning, preliminary training sessions were conducted. During these
sessions, the initial hyperparameters, primarily those recommended by the original authors of each model, were subjected to
minimal adjustments to assess learning dynamics and convergence behavior. This process facilitated the identification of stable
baseline configurations, which served as the basis for the subsequent experimental phase.

After defining these baselines, the fine-tuning stage was executed. For the Transformer-based models, a manually implemented
training loop was employed, following the conventional deep learning workflow consisting of forward propagation, loss
computation, backward propagation, and parameter updates. In contrast, models from the YOLO family were trained using the
automated pipeline provided by their developers. Additionally, during the fine-tuning process, two distinct configurations were
evaluated: first, models were trained exclusively on the original datasets; subsequently, data augmentation techniques were
incorporated to assess their impact on model performance.
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3.3 Object detection finetuning

For the fine-tuning of the object detection models, we selected detr-resnet-101, rt-detr-r101vd and deformable-detr, which
contain approximately 60 million, 78 million and 40 million parameters, respectively. For the YOLO family, we selected the
YOLOVS8-X and YOLOV11-X models, each comprising roughly 57 million parameters. This selection was informed by a
preliminary experimentation phase in which a broader set of architectures from the DETR, RT-DETR, and YOLO families,
varying in parameter size, capabilities, and pre-training strategies, were evaluated. The chosen models exhibited the most favorable
balance of performance and learning capacity for the specific requirements of our task.

During training, the dataset was loaded and divided into mini batches of varying sizes, determined by GPU capacity and the
memory footprint of each model. A lazy loading strategy was employed to prevent GPU memory overflow. The AdamW
optimizer was used due to its demonstrated stability and efficiency in training and fine-tuning deep learning models. Each model
retained its native loss formulation: DETR-based models employed a Hungarian-matched multi-task loss combining classification
loss with bounding box regression losses (L1 and GloU), while the YOLO models used a composite loss consisting of
classification (cross-entropy) and bounding box regression terms based on IoU/CloU.

Within the training loop, the mini batches were dynamically retrieved, and images were pre-processed according to the standard
pipeline of each architecture. Data augmentation was applied during image loading to avoid excessive GPU overhead. The
augmentation procedures included random cropping, image degradation (jitter), blur, horizontal flipping, and adjustments in color
and brightness.

Hyperparameter configurations used during fine-tuning, along with the corresponding performance results for each model family
are summarized in Tables 3 and 4.

Table 3. DETR-based models hyperparameters configuration and training results

pETR  PETR pppprr RT-PETR - pepomable-ppTR - Deformable-DETR
Aug Aug Aug
Epochs 300 150 350 350 350 350
Batch size 10 10 10 10 3 5
Model learning rate Se-5 le-4 le-4 le-4 le-4 le-4
Backbone learning rate Se-4 Se-4 Se-4 Se-4 Se-4 Se-4
Acc. gradient batch size 50 30 30 30 9 15
Training time (hours) 4:15 2:59 2:51 3:20 7:20 6:46
GPU consumption (GB) 19.8 15.6 16.5 18.5 224 23.2
Initial loss value 3.17 2.99 36.54 36.40 2.74 2.96
Final loss value 1.52 2.59 4.19 4.68 0.9 0.47

Table 4. YOLO family models hyperparameters configuration and training results

YOLOv8 YOLOv8 Aug YOLOvIil YOLOvIl Aug

Epochs 200 200 200 200

Batch size 10 10 10 10
Model learning rate le-4 le-4 le-4 le-4
Training time (hours) 1:38 1:00 1:00 1:23
GPU consumption (GB) 8.72 8.83 10.7 10.6
Initial loss value 1.70 1.73 1.70 1.72
Final loss value 0.60 0.60 0.17 0.6

Although the YOLO models were configured to train for a total of 200 epochs, both terminated training at epoch 125. This behavior
is explained by the internal early-stopping mechanism, which halts optimization once no further improvement in validation
performance is observed over a predefined number of consecutive epochs.

During the training of the DETR-family models, it was observed that both DETR and RT-DETR required approximately 100

epochs before exhibiting clear signs of learning. This behavior is likely attributable to the characteristics of the datasets used
during their initial pre-training, primarily containing common objects, and to the relatively small size and high density of the text
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regions in our task. Nevertheless, once learning stabilized, both models successfully identified text sequences and generated
bounding boxes without truncation or positional distortions.

In contrast, the Deformable-DETR model demonstrated rapid convergence within the first 100 epochs, followed by a refinement
phase characterized by progressive improvements in feature extraction and bounding box localization.

Although data augmentation techniques were incorporated into the training process, they did not yield substantial improvements
in terms of learning rate or convergence speed. However, these techniques did contribute to more robust feature extraction and
enhanced stability during training.

3.4 OCR finetuning

For the fine-tuning stage of the OCR models, we selected TrOCR-Large-Stage-1, TrOCR-Large-Handwritten, TrOCR-
Large-Spanish, Nougat-Latex, and Nougat-Base. The TrOCR-based models contain approximately 609 million parameters,
while the Nougat-based models comprise roughly 300 million parameters.

Preliminary tests were conducted to determine suitable training hyperparameters. The results indicated that the optimal
configurations closely aligned with those originally proposed by the authors of each architecture, with minor adjustments, such as
reducing the learning rate and decreasing the number of epochs, to facilitate faster convergence.

The training loop was manually implemented and consisted of loading cropped image samples together with their corresponding
labels. As in the object detection setup, data augmentation was applied during image retrieval to minimize memory usage.
Preprocessing and tokenization were performed using the tools provided with each model. However, for both model families, it
was necessary to manually construct the attention masks and shifted decoder inputs due to unexpected behavior in the default
pipeline. Specifically, the tokenizer frequently failed to insert the end-of-sequence token, causing the models to continue
generating tokens until the predefined maximum sequence length was reached.

For optimization, cross-entropy loss was employed, given that the models output token-level probability distributions. Parameter
updates were performed using the AdamW optimizer, which demonstrated stability and efficiency throughout the fine-tuning

process. The hyperparameters used for fine-tuning are summarized in Tables 5 and 6.

Table 5. TrOCR and Nougat models configuration

Hyperparameter TrOCR-LS-1  TrOCR-LH  TrOCR-LS  Nougat-Base = Nougat-Latex
Epochs 15 15 10 10 10

Batch size 5 5 5 5 5
Model learning rate 4e-5 4e-5 4e-5 4e-5 4e-5
Training time (hours) 4:45 4:28 3:08 1:29 3:49
GPU consumption (GB) 14.6 14.7 9.76 20.2 11.2
Initial loss 1.88 2.20 1.88 1.00 1.27
Final loss 0.37 0.88 0.41 0.08 0.09

Table 6. TrOCR and Nougat models configuration with data augmentation samples

TrOCR-LS-1 TrOCR-LH  TrOCR-LS  Nougat-Base = Nougat-Latex

Hyperparameter Aug Aug Aug Aug Aug

Epochs 10 10 10 10 10

Batch size 5 5 5 5 5
Model learning rate 4e-5 4e-5 4e-5 4e-5 4e-5
Training time (hours) 1:34 2:55 3:18 1:35 3:56
GPU consumption (GB) 14.71 7.1 20.8 17.9 15.5
Initial loss 1.56 2.17 2.22 1.56 1.28

Final loss 0.18 0.72 0.53 0.18 0.1

During the training process, we observed that the models from both families exhibited similar behavior, independent of the data
augmentation strategies applied. In all cases, convergence proceeded slowly but consistently.
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To further evaluate the robustness of these models, additional experiments were conducted in which the number of training epochs
was increased while the learning rate remained fixed. These experiments revealed that the models became unstable and ultimately
unusable after approximately 15 epochs. Beyond this threshold, the models exhibited the characteristic signs of gradient explosion:
instead of continuing to decrease smoothly, the loss curves began to rise sharply, indicating divergence.

4 Evaluations and results

The evaluation of the models was carried out by grouping them according to the nature of their respective tasks. For the object
detection models, performance was assessed using standard metrics, including Intersection over Union (IoU), Precision, Recall,
F1-score, mean Average Precision (mAP), and its variants at different thresholds, namely mAP@50 and mAP@75. These metrics
provide a comprehensive view of both the localization accuracy and the overall detection performance of the models.

In the case of optical character recognition (OCR), the task was approached not strictly as a sequence translation problem, but
rather as a form of structured “code” generation, particularly relevant for LaTeX-based outputs. Consequently, evaluation was
conducted using Word Error Rate (WER) and Character Error Rate (CER), which are widely recognized metrics for assessing the
quality of generated text sequences, along with the BLEU and ROUGE metrics.

Additionally, to illustrate the practical performance of the models, qualitative results are presented in the form of images obtained
during the inference stage. These include examples of bounding box generation for object detection and LaTeX sequence
generation for OCR, thereby providing visual evidence of the outputs alongside the quantitative evaluation.

4.1 Object detection results

The evaluation of the object detection models followed a workflow analogous to that employed during training. The evaluation
dataset was first loaded and preprocessed dynamically and on demand, thereby preventing excessive GPU memory usage.
Subsequently, the trained model was initialized, and an evaluation cycle was executed in which the predicted outputs—bounding
box coordinates and class labels—were compared against the corresponding ground-truth annotations. Performance was then
quantified using the metrics previously described. The results of this evaluation are presented in Tables 7 and 8.

For both DETR and RT-DETR, the fine-tuned models consistently achieved improved performance relative to their original
variants (Figure 13, 14), despite exhibiting comparatively high loss values. This behavior is largely attributable to the inclusion
of auxiliary losses, an inherent feature of DETR architecture. These auxiliary losses, computed at intermediate decoder layers,
help stabilize parameter updates during pre-training and fine-tuning, thereby promoting more reliable convergence.

The YOLO models demonstrated strong adaptability to datasets with characteristics substantially different from those used during
their pre-training. They also produced bounding boxes with higher spatial precision than those generated by DETR and RT-DETR
(Figure 15), which is advantageous for tasks requiring fine-grained localization. However, during the classification of detected
regions, both YOLO models exhibited systematic errors when processing text with irregular character spacing or poorly formed
punctuation. In these cases, they frequently produced multiple bounding boxes for a single word and incorrectly classified them
as LaTeX elements.

Table 7. DETR models evaluation results

DETR DETR RT-DETR RT-DETR Deformable-DETR Deformable-DETR
Aug Aug Aug

10U 0.4354 0.5398 0.5093 0.4992 0.6434
Precision 0.6398 0.6881 0.6551 0.6888 0.8020
Recall 0.6688 0.7767 0.7033 0.7081 0.7947
F1 0.6540 0.7297 0.6988 0.6983 0.7984
mAP 0.1098 0.2719 0.2515 0.1926 0.3616
mAP@50 0.2204 0.3957 0.3150 0.2635 0.5089
mAP@75 0.0950 0.2665 0.2256 0.1513 0.2532
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Table 8. YOLO models evaluation results

YOLOv8 YOLOv8 Aug YOLOvll YOLOvll Aug

10U 0.4850 0.4576 0.4816 0.4951
Precision 0.5965 0.5650 0.5921 0.6142
Recall 0.7870 0.7951 0.7876 0.7768
F1 0.6786 0.6606 0.6760 0.6860
mAP 0.3044 0.3472 0.2904 0.3551
mAP@50 0.4099 0.4628 0.3933 0.4722
mAP@75 0.3073 0.3586 0.2850 0.3672

The Deformable-DETR models generated bounding boxes with high spatial accuracy and minimal overlap (Figure 16).
Nonetheless, like other transformer-based detectors, they showed limitations when handling text or sequences rotated by up to 10
degrees. Under these conditions, the models tended to produce bounding boxes that were larger than necessary. This limitation
stems from the inability of DETR, RT-DETR, and Deformable-DETR to generate orientation-aware bounding boxes aligned with
the direction of the text.

Although all models are theoretically capable of generating up to 300 bounding boxes per image, they generally produced fewer
than 120 bounding boxes across the three target classes, with the text category being the most frequently assigned label. This
constraint presents challenges for images containing more than 200 small or densely packed objects, as the upper limit on bounding
box generation restricts the total number of detectable elements. Consequently, several inference experiments resulted in
incomplete object detection due to this threshold.
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Figure 13. DETR generation output
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Figure 14. RT-DETR generation example

Finally, when evaluating the models trained with data augmentation techniques, we observed a decline in performance compared
to their counterparts trained without augmentation. All models exhibited incorrect bounding box generation (Figure 17), both in
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terms of quantity and spatial placement, as well as reduced classification accuracy for elements that were otherwise correctly
detected.
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Figure 17. Bounding boxes generated by DETR model trained with augmented data

4.2 OCR results

The evaluation of the TrOCR models followed a workflow analogous to that employed during training. The evaluation dataset
was loaded, and both images and their corresponding labels were preprocessed before being provided as input to the model. Unlike
in the training phase, the use of an attention mask was not necessary during evaluation, since the model generates output sequences
in an autoregressive manner. The results obtained from this process are summarized in Tables 9 and 10.

Table 9. Evaluation results from OCR models without data augmentation train

TrOCR-LS-1  TrOCR-LH  TrOCR-LS  Nougat-Base = Nougat-Latex

WER 76.60 76.36 61.12 57.31 54.95
CER 42.67 103.72 24.42 26.48 27.93
BLEU 46.44 18.20 50.65 65.95 64.63
ROUGE-1 0.74 0.66 0.74 0.75 0.74
ROUGE-L 0.74 0.65 0.73 0.75 0.74

Table 10. Evaluation results from OCR models with data augmentation train

TrOCR-LS-1 TrOCR-LH TrOCR-LS Nougat-Base Nougat-Latex

Aug Aug Aug Aug Aug

WER 65.98 68.25 59.02 63.70 61.71
CER 37.76 86.11 27.14 33.12 31.13
BLEU 57.95 48.64 50.35 61.44 63.47
ROUGE-1 0.69 0.72 0.75 0.71 0.72
ROUGE-L 0.69 0.71 0.74 0.71 0.72

As shown in Tables 9 and 10, the models that demonstrated the greatest learning capability, both with and without data
augmentation, were the Nougat-based architectures and the TrOCR model previously fine-tuned in Spanish. As expected, the
Nougat model pretrained on LaTeX sequences exhibited strong adaptability to the dataset. This behavior is illustrated in Figure
18, which present examples of LaTeX sequence generation for the TrOCR-Large-Spanish and Nougat-LaTeX models,

respectively.

Extensive testing further revealed that models without prior exposure to LaTeX syntax were able to correctly generate the required
code for short expressions, such as equalities, function definitions, and fractions. However, these models were unable to produce
valid code for more complex structures, such as tabular data (Figure 19). In contrast, the Nougat-LaTeX model, having been
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pretrained on LaTeX-rich data, more reliably generated correct table definitions due to its prior knowledge of the underlying
structural format.

pil_image pil_image

Figure 18. Example of LaTeX sequences generated by OCR models. a) TrOCR Spanish. b) Nougat-Latex

With respect to general text recognition, all models performed adequately, demonstrating a strong ability to transcribe cursive
handwriting. Nonetheless, both the TrOCR-Large-Spanish and TrOCR-Large-Handwritten models exhibited notable limitations
when processing longer sequences (exceeding 20 characters). In these cases, the models frequently repeated previously generated
segments and failed to correctly produce the end-of-sequence token. Consequently, the output often contained inaccuracies,
ranging from partially incorrect transcriptions to completely incoherent sequences.

Figure 19. Tabular data generated by OCR models. a) Nougat-Latex. b) TrOCR Spanish
5 Conclusions

In conclusion, the findings of this study demonstrate that transformer-based models can extend their knowledge to new domains,
provided that the target tasks remain compatible with the objectives of their pre-training. Although vision-focused transformer
architectures continue to evolve, they already offer substantial advantages over traditional convolutional approaches, achieving
comparable or superior performance, albeit with increased computational and energy demands.

Among the evaluated detection models, RT-DETR and Deformable-DETR exhibited the strongest overall performance, accurately
detecting, localizing, and classifying the proposed label categories. The YOLO family of models also showed a high degree of
adaptability, despite not being originally designed for the characteristics of this task. However, none of the evaluated models could
produce oriented bounding boxes aligned with the direction of handwritten text, which constitutes a significant limitation and
leads to a loss of information for sequences containing angled or vertically oriented elements.

With respect to object detection, particularly text, the introduction of data augmentation techniques did not yield improvements
in model learning or convergence.

For OCR tasks, the results indicate a clear trend: prior knowledge of the target sequence format and language significantly

facilitates convergence and promotes correct model adaptation. This is evident in the Nougat-LaTeX model, which reliably
generated LaTeX-formatted output, in contrast to the other models that frequently produced incomplete or inconsistent sequences.
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Similarly, using a base model already trained in the target language improves performance by reducing the need for abrupt
vocabulary restructuring and by preserving language-specific features such as lexemes and grammatical markers. Although data
augmentation did not benefit the object detection models, it did prove slightly advantageous for finer-grained tasks such as OCR,
contributing to more stable learning.

The dataset used in these experiments provided an adequate foundation for fine-tuning models for text detection and extraction.
Although relatively small, containing 625 images and 28,613 annotated objects, its diversity in language (Spanish), handwriting
styles (cursive and printed), and content topics makes it a valuable complement to larger datasets. Despite the use of only three
label classes, the LaTeX category contains programming-related structures and isolated annotations that further enrich the dataset.
Future work includes exploring architectures capable of generating text-oriented bounding boxes, investigating hybrid detection—
recognition models, and developing modifications to existing architectures that improve the precision and granularity of detected
and extracted elements. In addition, an integrated approach that unifies detection and sequence generation within a single model
may offer a promising direction, provided that such integration does not compromise performance in either task.

Data Availability

The code needed to replicate the experiments, as well as the datasets used, are publicly available in the repository
https://github.com/rodrigoalvarez-20/thst21.
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