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Abstract. The growing integration of electronic systems in vehicles 

has transformed the automotive industry, enabling improved 

performance, reduced costs, and enhanced functionality. However, 
the increased complexity of vehicular networks and the lack of built-

in cybersecurity mechanisms in communication protocols such as 

the Controller Area Network (CAN) bus have left modern vehicles 
vulnerable to cyberattacks. This paper presents a comprehensive 

investigation on intrusion detection in the CAN bus using multilayer 

neural networks (MLPs). A process is presented to find a neural 
network capable of detecting three types of attacks. This consisted 

of a series of experiments to find the minimal structure of a neural 

network that can detect malicious traffic on the CAN bus, allowing 

the identification of attack-free data and data with three types of 

attacks, denial-of-service (DoS), impersonation, and fuzzy attacks. 

Additionally, this work contextualizes CAN security issues, 
discusses related contributions, and presents future research 

opportunities. 
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1 Introduction 
 

Technological progress has driven significant advancements across multiple industries, enabling products to offer increasingly 

complex and efficient functionalities. In the automotive sector, these developments have enhanced numerous vehicle processes 

that demand high precision and speed. Among the most notable benefits are the reduction in wiring complexity, overall vehicle 

weight, and manufacturing costs. 

 

A pivotal innovation in this transformation has been the integration of Electronic Control Units (ECUs) [1], which are embedded 

computers responsible for monitoring and managing various subsystems within a vehicle. The emergence of the Controller Area 

Network (CAN) bus [2] further enabled seamless and efficient communication between ECUs, ensuring the constant exchange of 

data required for optimal system performance. Today, the CAN bus serves as the standard communication protocol in most modern 

vehicles. 

 

The automotive industry has evolved into a highly digitized sector. Vehicles now integrate 50–80 ECUs, each interconnected 

through the CAN bus. This network allows for high-speed data exchange, lightweight wiring, and reduced costs. Despite its 

advantages, the CAN protocol was designed without authentication or encryption, making it inherently insecure. Cybersecurity 

researchers have demonstrated the feasibility of attacks, such as Denial of Service (DoS) and message spoofing, which can 

jeopardize passenger safety [1]. Hence, cybersecurity mechanisms must complement vehicular communication. 

 

In this context, the CAN bus has become a key attack surface for adversaries seeking to compromise vehicular systems [3]. This 

research addresses that challenge by proposing an intrusion detection approach based on multilayer neural networks, aiming to 

identify and classify different types of malicious activity within the CAN bus. 

 



Escamilla-Ambrosio et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 62-75. 

63 

 

Specifically, the proposed model is designed to detect and differentiate between three common types of attacks, DoS, 

impersonation attacks, and fuzzy attacks, as well as to identify normal attack-free traffic. Unlike deep neural networks that often 

require extensive tuning and computational resources, the proposed approach explores a structured, gradually enhanced, multilayer 

neural network architecture suitable for deployment in automotive environments. 

 

The remainder of this paper is structured as follows. Section 2 presents a review of related work. Sections 3 and 4 discuss the 

technical considerations and methodologies employed in this study. Section 5 describes the experimental process used to 

determine the optimal network architecture, including the number of hidden layers, neurons per layer, choice of optimizer, and 

input data formatting. Finally, Section 6 concludes the paper with final remarks and potential directions for future work. 

 

2 Related Works 
 
There is an extensive body of research focused on developing security systems for protecting in-vehicle networks, with particular 

emphasis on the CAN bus. One widely used characteristic for intrusion detection is the transmission frequency of CAN messages 

from individual ECUs, which tends to deviate significantly during attacks. This behavior has been exploited in several intrusion 

detection methods, such as those based on statistical profiling [4]. 

 

Intrusion Detection Systems (IDS) for vehicular networks have used a wide range of techniques, including: 

 

● Statistical approaches, which monitor message frequency and timing to detect anomalies in CAN traffic [4]. 

● Machine learning algorithms, such as Support Vector Machines (SVM), Random Forests, and unsupervised methods like 

k-means clustering, to identify abnormal communication patterns [5], [6]. 

● Deep learning models, including Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), and 

Generative Adversarial Networks (GANs), which have demonstrated detection accuracies above 98–99%, but often at 

the cost of high computational requirements, limiting their feasibility for deployment in embedded automotive systems 

[7], [8]. 

 

For instance, Song et al. [6] proposed a CNN-based IDS that achieved 99% detection accuracy, while Kang et al. [5] utilized a 

deep neural network with 98% accuracy. Song et al. [7] later proposed a GAN-based approach, also reaching 98% accuracy. More 

recently, Huang et al. [8] presented a CNN-hybrid intrusion detection system implemented on FPGA hardware, achieving over 

99% accuracy and low latency, showing promise for real-time applications in constrained automotive environments. 

 

Unlike these prior studies, this research focuses on determining the simplest possible neural network architecture that still delivers 

high detection performance. An exhaustive experimentation process is conducted to find: 

 

1 the number of hidden layers, 

2 the number of neurons per layer, 

3 the choice of optimizer, 

4 and the data structure in the input layer (including sliding window configuration and frame sizes). 

 

This approach aims to achieve a balance between detection accuracy and computational efficiency, making the proposed IDS 

viable for real-world embedded automotive platforms. 

 

3 Vehicular Networks 
 

The development of computing technologies has marked a transformative era in the automotive industry. With the introduction 

of computers into vehicles, many subsystems that were previously mechanical or analog have been replaced by embedded 

controllers. These Electronic Control Units (ECUs) manage diverse vehicle functions, ranging from engine control and braking 

to infotainment and safety, thus enabling higher performance, efficiency, and adaptability. 

 

Modern vehicles typically integrate 50–100 ECUs, depending on the model and manufacturer, interconnected via in-vehicle 

communication networks. These control units are interconnected through in-vehicle communication protocols, among which the 

CAN bus remains the most widely adopted due to its cost-effectiveness and deterministic performance in real-time environments. 

Research surveys report that many intelligent vehicles employ approximately 70 ECUs, each exchanging message traffic over 

one or more CAN buses [9].  
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The CAN bus was developed by Robert Bosch GmbH in the early 1980s and formally introduced in 1986 at the SAE Congress. 

Its design goal was to reduce wiring complexity, improve reliability, and ensure deterministic message delivery without the need 

for a centralized master controller [10]. The CAN protocol employs a bus topology for the transmission of messages and supports 

communication rates up to 1 Mbps in classical implementations, with CAN FD (Flexible Data-Rate) later introduced to extend 

throughput and payload capacity. Each ECU listens to all messages but processes only those relevant to its identifier, which 

simplifies communication but exposes critical vulnerabilities [11]. 

 

From a cybersecurity perspective, the CAN bus protocol was specified without authentication, encryption, or integrity 

verification mechanisms. All circulating messages are implicitly trusted, which makes CAN inherently insecure. Consequently, 

adversaries can exploit this flaw by injecting, replaying, or spoofing frames that are indistinguishable from legitimate ones. This 

has been demonstrated in multiple studies where Denial of Service (DoS), impersonation, and fuzzing attacks disrupted or even 

hijacked vehicular systems [12]. 

 

Recent surveys emphasize that although CAN remains dominant in the automotive industry, its vulnerabilities necessitate 

supplementary defense mechanisms. Security frameworks incorporating cryptographic authentication, anomaly detection, and 

Intrusion Detection Systems (IDS) have been proposed as critical measures to safeguard vehicular networks against evolving 

cyber threats [9], [13]. 

 

4 Neural Networks 
 

A neural network is a computational model composed of interconnected processing units (called neurons) that try to emulate 

certain aspects of biological neural systems to solve complex tasks. These units (neurons) process inputs through weighted 

connections and activation functions, enabling the network to learn non-linear relationships in data [14], [15].  

 

Neural networks are structured in layers: an input layer, one or more hidden layers, and an output layer. Critical design elements 

include the selection of the optimizer (e.g., SGD, Adam, RMSProp), the architecture (number of hidden layers, neurons per layer), 

the data representation and preprocessing, activation functions (ReLU, sigmoid, etc.), loss functions, regularization methods 

(dropout, weight decay), and training parameters (learning rate, batch size, number of epochs) [15]. 

 

In recent years, neural networks (especially multilayer perceptrons, convolutional neural networks, and recurrent neural networks) 

have been employed in cybersecurity contexts to detect anomalies, intrusions, or attacks in different systems and networks [16]. 

 

This work aims to address the cybersecurity challenges in modern vehicles. As a countermeasure within the vehicle’s 

communication systems, this study proposes the development of a classifier based on a multilayer neural network capable of 

identifying various types of cyber-attacks on the CAN bus, such as message spoofing, DoS, and fuzzy (random payload) attacks. 

The classifier is designed to be lightweight, efficient, and suitable for real-time or near real-time deployment in embedded 

automotive systems. 

 

5 Development of the Neural Network Structure for CAN Attack Detection 
 

In the machine learning literature, there is no single protocol or standard that indicates a fixed neural network architecture tailored 

for all specific tasks. Determining the optimal structure of a neural network, such as the number of hidden layers, the number of 

neurons per layer, choice of optimizer, activation functions, and other hyperparameters, remains highly problem-dependent. 

Researchers often must balance expressive power, computational efficiency, and risk of overfitting [17], [18]. 

 

The experience and domain knowledge of the designer are frequently instrumental in proposing an initial architecture. However, 

this is often complemented by systematic experimentation or hyperparameter optimization techniques. For example, studies show 

that methods like particle swarm optimization (PSO), genetic algorithms, or more recently, neural architecture search (NAS) and 

meta-heuristic approaches can substantially aid in identifying efficient architectures [19], [20]. 

 

In the context of this work, a sequence of experiments was conducted to discover a neural network structure capable of detecting 

and classifying attack-related data over a vehicle’s CAN bus. Two overarching experimental configurations were evaluated: 

 

1. Multiclass Classification: Training the neural network to distinguish between three attack types, DoS, impersonation, 

fuzzing, and normal traffic. 
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2. Binary Classification: Distinguishing simply between normal and malicious traffic (aggregating attack types into one 

category). 

 

Additionally, the effect of different input data configurations on detection performance was investigated. Key configurations 

included: 

 

● Using data frames of various sizes (i.e., grouping a fixed number of CAN messages per sample). 

● Applying sliding windows over sequences of messages to incorporate temporal context. 

 

Figure 1 illustrates the overall process followed in this study to engineer and refine the neural network architecture. The 

methodological steps were: 

 

● Start with a baseline architecture: one input layer, one hidden layer, and one output layer, with a certain number of 

neurons, trained with a particular optimizer and loss (cost) function. 

● Evaluate several cost functions (such as categorical cross‐entropy, mean squared error, focal loss) and various 

optimization algorithms (SGD, Adam, RMSProp) to find what yields better detection accuracy and classification metrics. 

● Incrementally add hidden layers and modify neuron counts in each layer, observing the trade-offs in performance 

(accuracy, precision/recall) versus complexity (training time, memory usage). 

● Continue refining until additional complexity fails to yield statistically significant improvement in detection metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Diagram of the process followed for the development of the neural network. 

 

Through this process, the simplest architecture that satisfies the performance criteria (i.e., good detection rate across attack types, 

acceptable false positive rate, and feasible computational cost) was selected. Emphasis was placed on achieving effectiveness with 

minimal complexity to enable implementation in real embedded automotive systems. 

 

5.1 Data Set 
 

The dataset employed in this study was collected by the Hacking and Countermeasure Research Laboratory (HCRL) for research 

purposes [21]. The data consists of Controller Area Network (CAN) messages recorded during real driving sessions of 

approximately 40 minutes per trial. The dataset includes both normal traffic and traffic injected with malicious patterns. Three 

types of attacks were considered, as they are among the most widely studied in the literature on automotive cybersecurity: 

 

1. Denial of Service (DoS) – This kind of attack occurs when the CAN bus is flooded with high-priority frames, preventing 

legitimate messages from losing priority access. 

2. Fuzzy attack – This attack is seen when adversaries inject random data values (including identifier ID and data field) into 

the CAN bus. The objective is to create unpredictable and disruptive traffic. 

3. Impersonation attack – The attack occurs when an attacker steals the identity of a legitimate ECU using its identifier ID. 

The attacker sent falsified information to the CAN bus that will be accepted and processed because the system thinks the 

information is authentic. 

 

Table 1 summarizes the number of CAN messages in the dataset, separated by attack type and normal operation. 
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Table 1. Number of messages in the data sets 

Data set Number of messages 

Free of attacks 2,369,868 

DoS attack 656,579 

Fuzzy attack 591,990 

Impersonation attack 995,472 

 

The structure of a CAN message, illustrated in Figure 2, is composed of several fields necessary for ECUs to interpret and execute 

control actions. The key fields are: 

 

● Start of Frame (SOF): Indicates the beginning of a new message. 

● Identifier (ID): Provides arbitration priority and identifies the message content. This field is critical, since ECUs filter 

and process only those messages relevant to their operation. 

● Remote Transmission Request (RTR): Differentiates between data frames and remote request frames. 

● Data Field: Contains the actual payload (up to 8 bytes in classical CAN, and up to 64 bytes in CAN FD). 

● Control, CRC, and Acknowledge fields: Ensure message integrity and proper synchronization between transmitting and 

receiving ECUs [22]. 

 

In this work, the ID field and the Data Field were extracted and used as features for training the neural network. These two fields 

provide essential information for distinguishing between normal and malicious traffic, since most CAN attacks exploit 

manipulated identifiers or payload data. 

 

 

 

 

 

Fig. 2. Structure of a CAN message. 

 

For training purposes, the dataset was divided into two subsets: 80% for training and 20% for testing, following common practice 

in machine learning to ensure unbiased evaluation [23]. To provide temporal context, consecutive CAN messages were grouped 

into frames or sliding windows, which formed the input vectors of the neural network. 

 

The initial experiments used frames of 9 consecutive CAN messages, as shown in Figure 3. This approach allowed the model to 

learn temporal dependencies and recognize patterns that span multiple messages, improving detection accuracy for fuzzing and 

impersonation attacks where malicious payloads may not be evident in single messages. Further experiments investigated 

alternative frame sizes and sliding window mechanisms to assess their impact on classification performance. 

 

ID1 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID2 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID3 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID4 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID5 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID6 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID7 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID8 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

ID9 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 

 

Fig. 3. Structure of the frames presented to the neural network. 

 

5.2 Neural Network Validation Tests 
 

One of the main objectives of these experiments was to determine the architectural elements that best fit a neural network designed 

for classification and detection of cyberattacks on the CAN bus. The tests aimed to identify the most suitable configuration of 
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hidden layers, number of neurons per layer, choice of optimizers, and error (loss) functions to achieve the best detection accuracy 

while maintaining computational efficiency. 

 

The first experiments were carried out using a baseline neural network architecture composed of: 

 

● An input layer, of 81 neurons, corresponding to the features extracted from CAN message frames. 

● A single hidden layer, with a variable number of neurons (n). 

● An output layer with 4 neurons, representing the four classification categories (normal, DoS, fuzzy, impersonation). 

 

This initial setup was used to analyze the performance of different optimizers (Adam, Adagrad, and Stochastic Gradient Descent 

(SGD)) and error functions (binary cross entropy and sparse categorical cross entropy). The results indicated that the Adam 

optimizer combined with the sparse categorical cross entropy loss function provided the most stable convergence and the highest 

classification accuracy. Table 2 summarizes these results. 

Table 2. Results obtained during tests for a neural network with a single hidden layer 

Optimizer No. of neurons 

(hidden layer) 

Accuracy 

(Training) 

Accuracy 

(Validation) 

SGD 40 0.6515 0.6507 

Adam 40 0.9099 0.9019 

Adagrad 40 0.7091 0.7109 

 

To determine the optimal number of neurons in the first hidden layer, experiments were conducted by starting with a single neuron 

and gradually increasing up to 50 neurons. As shown in Figure 4 (error vs. no. of neurons) and Figure 5 (accuracy vs. no. of 

neurons), convergence in both error reduction and accuracy improvement was observed at approximately 40 neurons. 

Consequently, the first hidden layer was fixed at 40 neurons for subsequent tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Error graph-number of neurons in the hidden layer of the proposed neural network. 

 

Next, the architecture was extended to include a second hidden layer. Following a similar incremental process, the number of 

neurons in this layer was varied between 1 and 50. The results, shown in Figures 6 and 7, indicated that performance converged 

with approximately 30 neurons in the second hidden layer. Table 3 presents the results, where the two-hidden-layer network 

achieved an accuracy of 92%, compared to 90% for the single-hidden-layer network. 

 

Further experiments investigated deeper architectures with three, four, and five hidden layers. The same incremental methodology 

was applied to determine the number of neurons per layer, starting from one neuron and increasing up to 50. The results are shown 

in Table 4, which revealed:  

 

● Accuracy improved consistently from one to three hidden layers. 

● Performance plateaued with four hidden layers. 

● Accuracy decreased slightly with five hidden layers, suggesting diminishing returns and possible overfitting. 
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Fig. 5. Accuracy-number of neurons in the hidden layer of the proposed neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Error-number of neurons plot for the neural network with two hidden layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Accuracy-number of neurons plot for the neural network with two hidden layers. 

 

Based on these observations, it was concluded that three hidden layers represent the optimal trade-off between accuracy and 

complexity for this problem. Architectures with more layers can yield marginal improvements but also introduce higher 

computational costs and greater risk of overfitting, which is undesirable for real-time, resource-constrained environments such as 

in-vehicle ECUs. 
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Table 3. Results obtained during tests for a neural network with two hidden layers 

Optimizer No. of neurons 

(1st, 2nd hidden layers) 

Accuracy 

(Training) 

Accuracy 

(Validation) 

SGD 40,30 0.6036 0.6507 

Adam 40,30 0.9257 0.9247 

Adagrad 40,30 0.7165 0.7109 

 

Table 4. Results obtained with different numbers of hidden layers 

Hidden 

layers 

No. of neurons 

per layer 

Accuracy 

(Training) 

Accuracy 

(Validation) 

1 40 0.9099 0.9019 

2 40,30 0.9257 0.9247 

3 40,30,28 0.9514 0.9379 

4 40,30,28,26 0.9532 0.9404 

5 40,20,28,26,24 0.9505 0.9315 

 

In summary, the experiments demonstrated that: 

 

● Adam optimizer and sparse categorical cross entropy loss are well suited for CAN attack detection. 

● The optimal architecture for this work consists of three hidden layers with approximately 40, 30, and a smaller number 

of neurons in the third layer. 

● Increasing depth beyond three hidden layers introduces complexity without significant performance gains. 

 

This systematic exploration of architectural choices ensured that the neural network was as simple as possible but sufficiently 

complex to capture the patterns of malicious CAN traffic. 

 

5.3 Testing with different frame sizes for the input layer 
 

The experiments described in this section were designed to determine the optimal frame size for feeding data into the input layer 

of the neural network for effective classification of CAN bus traffic. The goal was to identify a frame size that balances sufficient 

contextual information with generalization capability, thereby ensuring accurate detection of both normal and malicious data 

patterns. 

 

Each frame consisted of a sequence of CAN messages arranged into an array of dimension N × 9, where N represents the number 

of consecutive CAN messages grouped together and 9 corresponds to the features extracted per message (e.g., CAN ID and data 

field bytes). The tests began with a minimal frame of size 1 × 9 (one message), progressively increasing to frames containing 50 

× 9 messages. This incremental approach enabled evaluation of how temporal context impacts the neural network’s performance 

in attack detection. 

 

Figures 8 and 9 illustrate the results of these experiments. Figure 8 presents the evolution of the error across different frame sizes, 

while Figure 9 shows the corresponding accuracy values. The results reveal several important trends: 

 

● Very small frames (e.g., 1 × 9 or 3 × 9) provided insufficient information for reliable classification. As a result, accuracy 

values were low, and the models exhibited difficulty in distinguishing between normal and attack traffic. 

● Performance improved significantly as the frame size increased. Larger frames provided the neural network with more 

temporal context, improving its ability to detect anomalies that may not be apparent in a single message. 

● However, frames exceeding the size of 20 × 9 began to show reduced generalization capability. Although accuracy 

sometimes improved within the training set, overfitting became apparent, and performance deteriorated on unseen test 

data. 

 

Based on these findings, three frame sizes were identified as optimal trade-offs: 
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● Minimum viable size: 9 × 9 — sufficient to provide meaningful context without excessive complexity. 

● Preferred size: 16 × 9 — offering consistently high accuracy and robust generalization across attack types. 

● Upper bound: 20 × 9 — beyond this point, the risk of overfitting outweighs the marginal performance gains. 

 

Table 5 presents the results obtained using the three-hidden-layer neural network across different frame sizes. For comparison, 

results obtained with larger frames are also included, showing diminishing returns in accuracy when exceeding the recommended 

maximum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Error-frame size plot for the neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Accuracy-frame size graph for the neural network. 

Table 5. Results obtained for the neural network considering different data frame sizes 

Data frame 

size 

No. of neurons 

(1st, 2nd, 3rd hidden layer) 

Accuracy 

(Training) 

Accuracy 

(Validation) 

9x9 40,30,28 0.9517 0.9377 

16x9 40,30,28 0.9684 0.9581 

20x9 40,30,28 0.9605 0.9487 

26x9 40,30,28 0.9509 0.8983 

 

For the neural network architectures considered in this work, a frame size of 16 × 9 is recommended. This configuration provided 

the best balance between accuracy, computational efficiency, and generalization, making it well suited for real-time detection of 

CAN bus attacks in embedded automotive environments. 

 

5.4 Testing with bi-class neural networks 
 

In this stage of the study, a set of experiments was conducted using binary classification neural networks. Unlike the multiclass 

configuration explored earlier, these networks were designed to classify CAN bus traffic into only two categories: attack-free data 
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and malicious data of a specific type. The rationale behind this approach was to evaluate whether simplifying the classification 

task would lead to improved detection performance for individual attack types. 

 

All tests employed frames of size 16 × 9, as previously identified as the optimal configuration for balancing accuracy and 

generalization. Four different binary classification models were trained, each targeting a specific detection scenario: 

 

1. Normal vs. DoS traffic – distinguishing between benign CAN messages and those containing denial-of-service (DoS) 

patterns. 

2. Normal vs. Fuzzy traffic – detecting random identifier and payload injections characteristic of fuzzy attacks. 

3. Normal vs. Impersonation traffic – identifying instances where an attacker injects forged frames mimicking legitimate 

ECU identifiers. 

4. Normal vs. Attack traffic (all types) – classifying traffic into attack-free versus any malicious pattern (DoS, fuzzy, or 

impersonation combined). 

 

The outcomes of these tests are summarized in Table 6. Across all scenarios, the binary classifiers exhibited improved accuracy 

compared to the multiclass model, confirming that reducing the number of output classes simplifies the decision boundaries and 

reduces classification ambiguity. Summarizing these results: 

 

● The Normal vs. DoS classifier achieved particularly high accuracy, as DoS attacks generate distinctive traffic patterns 

(e.g., overwhelming high-priority frames) that are relatively easier to detect. 

● The Normal vs. Fuzzy classifier also performed well, though accuracy values were slightly lower due to the randomness 

and unpredictability of fuzzy attack payloads. 

● The Normal vs. Impersonation classifier achieved strong performance, reflecting the model’s ability to detect subtle 

manipulations of CAN identifiers. 

● The Normal vs. Attack (combined) classifier yielded high overall detection accuracy, making it a promising option for 

practical deployment in real-time intrusion detection systems where identifying the presence of any attack is sufficient. 

 

Table 6. Results obtained for the neural network considering different data frame sizes 

Neural 

network 

No. of neurons 

(1st, 2nd, 3rd hidden layer) 

Accuracy 

(Training) 

Accuracy 

(Validation) 

1 40,30,28 0.9999 0.9995 

2 40,30,28 0.9997 0.9942 

3 40,30,28 0.9735 0.9400 

4 40,30,28 0.9792 0.9488 

 

 

These results highlight the trade-off between binary and multiclass classification strategies in intrusion detection. While multiclass 

models provide richer information by identifying the exact type of attack, binary models deliver higher accuracy and robustness 

by focusing on simpler decision boundaries. For embedded vehicular systems with limited computational resources, a hybrid 

approach could be considered: using binary classifiers for real-time monitoring and multiclass models offline for forensic analysis 

and attack characterization. 

 

 

 

5.4 Testing with sliding windows 
 

Finally, a set of experiments was conducted in which the input data to the neural network were processed using a sliding window 

format. In this approach, the frame presented to the input layer is continuously updated: as each new CAN message arrives, it is 

appended to the frame, while the oldest message is simultaneously discarded. This rolling update ensures that the frame always 

contains the most recent sequence of messages. 

 

This methodology contrasts with the earlier fixed-frame experiments, where it was necessary to accumulate a complete set of 9 or 

16 messages before constructing an input frame. With sliding windows, however, a new frame is formed with every incoming 
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CAN message. This characteristic is particularly advantageous for real-time intrusion detection, as it eliminates latency introduced 

by waiting for a full frame to be assembled. Instead, the neural network continuously receives updated frames, allowing faster and 

more responsive attack detection. 

 

The experimental results demonstrate that using sliding windows improves the classification performance of the neural network. 

Specifically: 

 

● Accuracy gains: Accuracy values either matched or exceeded those obtained in earlier fixed-frame tests. 

● Timeliness: Since new frames are available for every message received, the system is better suited for real-time 

environments, where delays in detecting malicious activity can have safety-critical consequences. 

● Stability: Sliding windows help capture short-term temporal dependencies, which are valuable for detecting attacks such 

as impersonation or fuzzy injections that may only manifest over a short sequence of messages. 

 

Figure 10 illustrates the sliding window mechanism, showing how overlapping frames are formed from consecutive CAN 

messages. The detailed results of these tests are presented in Table 7, which confirms that the sliding window approach provides 

consistently strong or improved accuracy compared to fixed-frame experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Accuracy-frame size graph for the neural network. 

Table 7. Results obtained for the neural network considering sliding windows 

Neural network No. of neurons 

(1st, 2nd, 3rd hidden layer) 

Accuracy 

(Training) 

Accuracy 

(Validation) 

4 classes 40,30,28 0.9856 0.9766 

3 classes 40,30,28 0.9999 0.9994 

DoS – Free 40,30,28 0.9999 0.9999 

Fuzzy – Free 40,30,28 0.9998 0.9995 

Imper – Free 40,30,28 0.9713 0.9632 

Attack - Free 40,30,28 0.9792 0.9488 

 

 

In addition, we include Table 8 with information related to the following metrics: Recall, Specificity, Precision, FPR, FNR, and 

F1-Score. 

Table 8. Results obtained for the neural network considering sliding windows 

Neural network Recall Specificity Presicion  FPR FNR F1-Score 

4 classes 0.9712 0.9879 0.9888 0.012 0.0287 0.9799 

3 classes 0.9998 0.9997 0.9999 0.0012 0.0010 0.9998 

DoS – Free 0.9999 0.9999 0.9999 0.0001 0.0001 0.9999 

Fuzzy – Free 0.9998 0.9991 0.9997 0.0008 0.0001 0.9997 

Imper – Free 0.9781 0.9621 0.9843 0.0378 0.0218 0.9812 
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Precision [25] is the proportion of correctly predicted positive cases out of all cases predicted as positive. Recall [25] is the 

proportion of correctly predicted positive cases out of all actual positive cases. The F1 [25] score is a harmonic mean of precision 

and recall. It is useful for unbalanced datasets, as it seeks a balance between these two metrics. FPR is the ratio of false positives 

to the sum of false positives and true negatives. It measures the proportion of actual negative cases that are incorrectly classified 

as positive by the model. FNR is the ratio of false negatives to the sum of false negatives and true positives. It measures the 

proportion of actual positive cases that are incorrectly classified as negative by the model. A high FNR or FPR means that the 

model is making a lot of errors. 

 

In summary, adopting a sliding window input structure enhances both the accuracy and the practical applicability of the neural 

network model. By enabling near-instantaneous frame construction, this method provides a pathway for real-time intrusion 

detection in embedded automotive systems, where minimizing detection latency is essential for ensuring passenger safety and 

system reliability. 

 

 

 

6 Conclusion and Future Work 
 

In this work, a machine learning–based classifier has been proposed to detect abnormal behavior in the data flow of a vehicle’s 

Controller Area Network (CAN) bus. The classifier employs a multilayer perceptron (MLP) neural network, specifically designed 

to identify deviations from normal traffic patterns and to classify different types of cyberattacks targeting in-vehicle 

communication systems. 

 

The proposed approach is capable of distinguishing between: 

 

1. Normal traffic (attack-free data), 

2. Denial of Service (DoS) attacks, 

3. Fuzzy attacks, and 

4. Impersonation attacks. 

 

The experiments confirmed that the classifier achieves robust performance in detecting and classifying these categories. However, 

some limitations were observed. For binary-class neural networks, the model occasionally misclassified normal traffic as 

anomalous when using frames of size 16 × 9 with sliding windows. Furthermore, when larger frames (e.g., 20 × 9) were employed, 

the classifier exhibited difficulties in generalizing to unseen cases, highlighting the risk of overfitting when temporal context is 

excessively extended. 

 

Through systematic experimentation, the following configuration was identified as optimal for this task: 

 

● Optimizer: Adam, which provided faster convergence and stable learning dynamics. 

● Loss function: Sparse categorical cross entropy, enabling effective classification across multiple categories. 

● Hidden layers: Three layers with 40, 30, and 28 neurons, respectively. 

 

This architecture, in conjunction with sliding window input formatting, achieved the highest accuracy among all tested 

configurations. Figures presented earlier in this study (e.g., evolution of error and accuracy with neuron counts, and sliding window 

results) support the conclusion that this architecture represents the best trade-off between complexity, accuracy, and computational 

feasibility. 

 

The results demonstrate that high detection accuracy can be achieved without resorting to more computationally demanding 

architectures, such as convolutional or deep residual networks. This makes the proposed classifier particularly suitable for 

deployment in embedded automotive systems, where processing and memory resources are constrained. 

 

Table 9 compares the accuracy values obtained in this work with those reported in related studies. While deep learning approaches 

such as CNNs and GANs have reported slightly higher accuracies in some cases [5], [6], the proposed MLP achieves comparable 

results with significantly lower computational cost, thereby enhancing its potential for real-world, real-time intrusion detection 

applications in vehicles. 
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Table 9. Results obtained for the neural network considering sliding windows 

Reference Accuracy Precision Structure 

[24] DCNN 99% 99% 3 filters (several layers) 

[6] 98% 98% 11 hidden layers 

[5] 99% 98% 2 NN (convolutional, deep) 

This proposal 99% 99% 3 hidden layers 

 

Overall, this work confirms that an appropriately optimized MLP, combined with carefully designed input representations such 

as sliding windows, is a viable and efficient solution for CAN bus intrusion detection. By achieving strong performance with a 

relatively simple architecture, this study contributes to bridging the gap between theoretical research and practical implementation 

in vehicular cybersecurity. 

 

6.1 Future Work 
 

Although this study demonstrates that optimized multilayer neural network can effectively detect attacks on the CAN bus, several 

avenues remain open for future research: 

 

● Real-time deployment and validation. Future efforts should focus on implementing the proposed classifier in embedded 

automotive hardware to validate its performance under strict memory and processing constraints. Real-time experiments 

on physical testbeds or in-the-loop simulations would provide insights into latency, scalability, and practical feasibility. 

● Online learning and adaptability. The current model is trained offline with pre-collected data. In real-world environments, 

however, attack patterns may evolve over time. Incorporating online learning mechanisms or incremental training 

strategies could allow the classifier to adapt dynamically to new or unforeseen attack types. 

● Integration with hybrid detection systems. While neural networks provide strong detection performance, combining them 

with statistical anomaly detection, rule-based systems, or cryptographic measures could enhance robustness. Hybrid 

intrusion detection systems (IDS) may reduce false positives while improving resilience against sophisticated attacks. 

● Evaluation with extended datasets. Additional experiments should be conducted using datasets that include other types 

of CAN attacks (e.g., replay, masquerade, and more advanced fuzzing techniques). Testing with multi-vehicle and multi-

vendor datasets would ensure greater generalization across diverse automotive platforms. 

● Explainability and interpretability. As neural networks are often treated as “black-box” models, exploring methods to 

improve the explainability of predictions would be valuable. Understanding why the model classifies a frame as malicious 

could help automotive engineers in diagnosing anomalies and strengthening system trust. 

● Migration toward the next generation of automotive networks. With the adoption of CAN FD and Automotive Ethernet 

in modern vehicles, future research should investigate the transferability of the proposed method to these protocols. 

Evaluating the scalability of the approach across different in-vehicle networks will be critical for long-term applicability. 

● Implementation in an embedded system that includes a Raspberry Pi for real cases of studio. This advice will be 

connected to the OBD port of the automobile to register and analyze traffic data in the vehicle network.  

● Development and implementation of an application in which the user will be warned through a message or with an 

android/IOS application. 

 

In summary, future work should not only aim at improving detection accuracy but also at ensuring that intrusion detection systems 

are adaptive, interpretable, and feasible for real-world deployment in the evolving landscape of vehicular cybersecurity. 
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