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developed for software engineering, this technique has
increasingly been applied to support various activities in the
software design phase. However, information about its use remains
scattered across different studies. To address this gap, this work
presents a systematic literature review synthesizing the state of the
art on the application of cluster analysis in software design.
Following a rigorous selection process, 14 primary studies
published between 2019 and 2025 were identified from four digital
libraries: IEEE Xplore, ACM Digital Library, Springer Link, and
ScienceDirect. This review highlights the contexts in which
clustering has been applied, emphasizing its predominant role in
class decomposition tasks and the frequent adoption of the K-
means algorithm, while also documenting the algorithms and tools
used during design activities. Furthermore, the analysis discusses
the benefits and challenges of adopting cluster analysis in this
stage of development. The findings provide software engineering
researchers and practitioners with a consolidated overview of the
role of cluster analysis in software design, offering insights into its
potential, limitations, and directions for future research and
practice.

Keywords. Cluster Analysis, Unsupervised Machine Learning,
Software Design, Software Engineering, Systematic Literature
Review, Class Decomposition, K-means, Design Phase, Software
Architecture, Empirical Studies.

1 Introduction

According to [1], Software Engineering (SE) is defined as “an engineering discipline that deals with all aspects of software
production”. We can understand this as a set of activities divided into processes in order to develop a high quality software
product. SE is based on the Software Development Life Cycle (SDLC), an abstract functional model that represents the
conceptualization of a system’s need, its realization, use, and evolution [2]. The phases that are most present in software
development are specification, definition of requirements, system and software design, implementation and unit testing, and
operation and maintenance [1]. The purpose of all these activities, organized in stages, is to be able to build a good quality
software project. One of the most important phases in the software engineering process is software design. Software design is
the process of “translating software requirements into graphical models which help programmers in the implementation of the
software” [3].

The software design stage is a crucial phase in the software development process, resulting in a design specification document
for further use in program development [4]. Investing in a solid design early in the process helps prevent serious issues in later
stages such as implementation, testing, or deployment, where errors become more costly and complex to resolve. In order to
produce a quality product that meets the client's requirements, it is necessary to develop models that meet various aspects of the
software and that are the link between the established requirements and the way in which a programmer should develop the
software. A flexible, maintainable, extensible, and re-usable software design “enables easier integration of new requirements”
[5], so activities usually performed in the software design phase such as the identification of similar design artifacts, Searching
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for similar artifacts for reuse and identification of similar or repeated documentation can be automated by cluster analysis
algorithms.

On the other hand, artificial intelligence (Al) according to [6] can be understood as “systems or machines that can perform
activities that require intelligence when performed by humans”. Recently, Al has become a very popular topic in the software-
related world. Al has allowed SE to mitigate some problems due to human bias and has favorably impacted the areas of software
requirements [7], software design [8], and software testing [9]. By mixing both disciplines, they generate new areas of
opportunity for research [10]. However, Al does not have special methodologies for the development of high-quality software,
as well as methodologies that adapt to systems that are used for research and experimentation of artificial intelligence itself. For
this reason, it is seen that SE can contribute to these needs to Al and therefore the collaboration of both disciplines is necessary
to obtain better results in the two areas of research.

The reliability and times necessary to carry out the development of a software project are usually influenced by many factors,
mainly the human factor, which can be supported by Al. The need for automation and autonomous decision making have given
rise to the application of Al and Machine Learning (ML) in software development activities, however, failures and deficiencies
still occur in the resulting software systems [11]. According to [12] Machine Learning ’is the area of study that helps computers
learn automatically’. This area of Al offers a wide field of research, since it can provide new techniques that solve automation
problems in software product development processes.

Machine Learning comprises three types of learning, supervised learning, unsupervised learning and reinforcement learning
[13]. Supervised learning works under supervision and labeled data set, data that already knows the target. Unsupervised
learning, unlike the previous one, works without supervision, that is, the data is not labeled and therefore only patterns are
searched [13]. Reinforcement learning is very different from the other two types, as it is based on reward-based learning. In
other words, doing a good job will result in a positive reward, otherwise a penalty. Reinforcement learning is composed of five
steps: agent state, environment, reward, state and action [13].

This work focuses on the second type of learning, unsupervised learning, a technique called Cluster Analysis (CA), is a
technique that seeks to group elements according to some similarity metric. According to [14], elements are grouped “according
to the degree of similarity between them, they are divided into several groups, in this way similar objects constitute a set. This
process is called the Grouping Process”. With this collection of information, research areas could be proposed to improve the
results of the use of cluster analysis. In addition, it may be useful for software engineers, presenting a new perspective on how
the grouping and search of different software artifacts (diagrams, documents, among others) can be optimized in the different
phases of the SE. In a scientific utility, this collection of information explains the current state of the application of CA in the
phases of SE.

In conclusion, this work will provide a general overview for SE practitioners or researchers to know how Cluster Analysis can
contribute to the various software design activities.

The rest of this article is structured as follows: Section 2 presents previous studies related to Al and CA in SE. Section 3
describes the research method used for this review. Section 4 shows the results, followed by the discussion of technical
implications in Section 5. Section 6 presents the threats of validity. Finally, conclusions and future work are presented in Section
7.

2 Related Work
To the best of our knowledge, no secondary study (systematic literature review, systematic mapping study, or survey) has been

identified through manual search that specifically addresses the use of CA in activities of the software design phase. Table 1
provides a summary of the reviews that we consider most closely related to our study.
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Table 1. Related work focused on CA in SE (RQ: Research Question, SSV: Search String Validation, R: Reported, NR:
Not Reported, QA: Quality Assessment, NS: Number of Studies, DS: Date of Studies)

Study SSvV QA NS DS RQ
Juziuk etal. [15] NR NR 39 1998- RQI1: How are the patterns documented and what pattern templates are used?
2012 RQ2: How are the design patterns connected?
RQ3: For what types of systems have the design patterns been applied?
RQ4: How can the design patterns be classified?
Batarseh et al. [16] NR NR 190 1975- RQI: Is there sufficient intelligence in the SE lifecycle?
2017 RQ2: What does applying Al to SE entail?
Robles-Aguilar et NR NR 36 2015- RQ1: What Software Design activities have been carried out with AI?
al. [8] 2020 RQ2: What Al techniques have been used in Software Design?
RQ3: In what design activities are Al techniques used and how many reports
are of that use?
RQ4: What software design artifacts have been made with Al techniques?
RQS5: What is the purpose of using Al software design?
RQ6: What are the most frequented venues to publish papers on this topic?
Chaudhry et al. NR R 58 1995- RQI1. What approaches and algorithms are currently available in clustering?
[17] 2023 RQ2. What are the benefits and drawbacks of various clustering techniques?
RQ3. What are the clustering evaluation measures to consider when selecting a
centroid finding method?
RQ4. What are the applications or fields where some clustering algorithms
outperform others?
Mecarder-Olivares R NR 15 2019- RQ1 What clustering algorithms have been used in software development with
et al. [18] 2024 agile methodologies to identify patterns?

RQ2. In which development phases have clustering algorithms been most
applied to identify patterns in software development with agile methodologies?
RQ3. What types of systems have applied clustering algorithms to identify
patterns in software development with agile methodologies?
RQ4. What are the advantages of using clustering algorithms to identify
patterns in software development with agile methodologies?
RQ5. What are the challenges of using clustering algorithms to identify
patterns in software development with agile methodologies?

In [15], a review in the area of software design is presented with the aim of reporting methods for detecting, documenting, and
classifying design patterns. The authors note that clustering techniques can be applied to identify different types of design
patterns. In [16], the authors conducted a review of the application of Artificial Intelligence (Al) in Software Engineering across
all phases of the development process from 1975 to 2017. Specifically, for the design phase, only 12 studies applying Al were
identified, focusing primarily on tasks such as self-adaptation to dynamic software architectures, applying self-adaptation to
autonomous agents, and evaluating architectures. However, these tasks were mainly supported by expert systems or agents,
without the involvement of clustering algorithms.

In [8], a systematic literature review (SLR) was conducted on design activities supported by Al in general between 2015 and
2020. The most frequently reported software design activities included the generation of design diagrams, architectural smell
detection, design pattern detection, and product line architecture design. Nevertheless, the most common Al techniques were
supervised learning methods, particularly for classification tasks, such as artificial neural networks, support vector machines,
and decision trees. Notably, this study did report some work using K-means and K-medoids for design pattern classification.

In [17], the authors explored almost 20 years (1995-2023) of research on identifying patterns using unsupervised clustering
algorithms. While this work is indeed based on clustering applications, it does not specifically target Software Engineering, and
even less so activities within the software design phase.

Finally, in the most recent work [18], the authors conducted an SLR on clustering across different phases of software

development. However, their focus was on agile development methodologies. They reported that the most widely used
algorithms include K-means, hierarchical clustering, K-medoids, single linkage clustering, and complete linkage clustering,

16



Sanchez-Garcia et al. / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 14-26.

among others. Their findings, however, were primarily related to software requirements and testing activities within agile
methodologies.

A review of these secondary studies on clustering or Al in Software Engineering reveals a clear gap: no existing work provides
practitioners with consolidated findings that help them understand clustering algorithms and tools in a way that facilitates

software design activities. Moreover, there is a lack of studies that demonstrate how clustering can support the identification of
patterns and the detection of similar artifacts in this critical phase of software development.

3 Research method
To carry out the systematic review, the guidelines of the methodology proposed by Kitchenham et al. [19] was followed. This
methodology consists of three stages: planning, conduction and reporting.

3.1 Planning Stage

At this stage, research questions are posed, search terms are defined, the search string is constructed, and selection criteria are
established.

3.1.1 Research Questions

For this review, five research questions were established, which aim to find relevant information related to the application of
Cluster Analysis in software design activities. Table 2 shows the research questions that guide this review.

Table 2. Research questions.

1D Research question Motivation

RQ1 What are the activities in the software It is important to know the different activities within
design engineering where CA has been software design used in CA to identify which ones have
used? the greatest impact.

RQ2 What are the CA algorithms used in It is important to know the different CA algorithms that
software design activities? are used in software design to provide valuable

information on how to use cluster analysis to improve
the requirements phase.

RQ3 What tools are used for CA in software Knowledge of the CA tools is important, since the choice
design activities? of the right tool is an important factor in achieving

successful results.
RQ4 What are the advantages of CA in Software design is of utmost importance, knowing the
software design activities? advantages of CA in the activities in this phase can

provide valuable information to improve the generation
and recovery of design artifacts.
RQ5 What are the challenges of CA in Knowing the challenges of CA in software design
software design activities? activities can provide valuable insights into how to
address challenges and get the most out of CA.

3.1.2 Data sources

Table 3 shows the selected data sources for the automated search, which were selected from the software engineering research
ranking presented by Zhang et. al. [20].

Table 3. Data sources

Data source Web site

ACM Digital Library https://dl.acm.org/

IEEE Xplore https://ieeexplore.ieee.org/
Science Direct https://www.sciencedirect.com/
Springer Link https://link.springer.com/
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3.1.3 Search Terms

From the research questions, the search terms along with their related terms were selected and they are shown in Table 4.

Table 4. Search terms.

Keyword Related Terms

Cluster Analysis Clustering

Machine Learning -

Design Software Design

Technique Method, approach, algorithm
Tools Software, Application

3.1.4 Search string

With the Table 4 it can be seen that five key terms were found, with cluster analysis and software design being the terms of
greatest interest for this research. Seven search strings were constructed with these terms, which were tested through search

iterations. For the evaluation of the strings, the Quasi-gold standard was used, using the metrics proposed by Zhang [20] that
will be described below.

In order to perform the automated search, various search strings were performed with various combinations of the search terms.
To evaluate the search strings, the guidelines proposed by Zhang [20] were used, the relevant articles are used to evaluate the
sensitivity and precision, mentioned by the methodology as Recall and Precision respectively; same as are calculated with (1)
and (2) respectively.

Recall = Retrieved relevant studies / Relevant studies. (1)

Precision = Retrieved relevant studies / Retrieved studies 2)

The seven search strings where the recall and precision metrics were applied based on five relevant studies found manually. The
selected search string was the one that reached a recall = 1 (although a recall = 0.8 is acceptable [20]) and precision = 1.8 which
is shown below.

"software design" AND ("machine learning" OR "clustering”)
3.1.5 Selection Criteria

Table 5 presents the inclusion and exclusion criteria that were used for the selection of primary studies in the automated search.

Table 5. Selection criteria.

1D Inclusion criteria
IC1 Studies were published between 2019 and 2025.
1C2 Studies written in the English language.

1C3 Full access to the studio is available.

1C4 The title and abstract answer at least one research question.
IC5 The study answers at least one research question.

ID Exclusion criteria

EC1 In multidisciplinary sources, the study is not in engineering or computer science.
EC2 The study is a slide presentation, technical report or chapter of a book.
EC3 The study is duplicated.

For the selection of primary studies, automated searches are performed with previously selected search strings and the results
are subsequently filtered by applying the inclusion and exclusion criteria. These criteria were assigned in four stages. Fig. 1
shows the stages for the selection process of primary studies. Table 6 shows the results of selection process of the primary
studies.
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Stage1 Stage2 Stage3 Stage4

B

{IC2} ‘IC3‘ ‘IC4 ‘ECS

EC1W EC2 ‘ IC5

Fig. 1. Primary studies selection process.

3.2 Reporting

The narrative synthesis was conducted by following the procedures outlined by Popay et al. [21]. This process involved
analyzing the findings and organizing them according to each of the research questions. To achieve this, the results were
grouped by research question, and relevant text fragments were extracted from the primary studies. These excerpts were then
tabulated to provide structured responses to the research questions. Once the tabulation was completed, related data were further
clustered, resulting in a systematic classification of the evidence in line with the research questions.

4. Results

Table 6 shows the results of the selection process of primary studies by phase, where it can be seen that in the initial search
15,196 studies were obtained. In Table 6 It can be observed that the stage in which most articles were excluded was the first one,
primarily due to the year of publication criterion. In stage 3, the criterion that led to the highest number of exclusions was IC4,
which involved reviewing the title and abstract in relation to the research questions.

Table 6. Results of the primary studies selection process.

Source of information Initial search Stage 1 Stage 2 Stage3  Stage 4

IEEE Xplore 460 231 231 8 6
SpringerLink 4,422 2,337 2,001 10 1
ACM Digital Library 3,130 1,825 513 4 1
ScienceDirect 7,185 3,464 2,071 6 6
Total 15,197 7,857 4,816 28 14

Table 7 presents the primary studies selected by source, showing that IEEE Xplore and Springer Link were the venues with the
highest number of publications. Figure 2 illustrates the distribution by year of publication, where a relatively constant output can
be observed; however, as of July 2025, no primary study directly related to the topic was identified.

Table 7. Selected primary studies.

Data source References

IEEE Xplore [22][23][24][25][26][27]
ACM Digital Library [28]

ScienceDirect [29]

Springer Link [30][31][32][33][34][35]
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Fig. 2. Number of selected studies per year.

4.1 RQ1. What are the activities in the software design engineering where CA has been used?

As shown in Table 8, the activities in which CA is applied are primarily related to improving the understanding of software
systems by decomposing them into less complex subsystems. CA groups the elements required in software design into simpler
packages, thereby facilitating both comprehension and management of the system. An additional key application of CA is the
identification and prediction of design errors, enabling their prevention or the establishment of contingency plans when
necessary.

Table 8. Software design activities in which Cluster Analysis was used.

Activities of Description Studies
software design

Predict defects in For error prediction in software design, Cluster Analysis has proven [30][31][32]
software design. to be a valuable tool. It has been applied to assess the weight of risks

and to group them into clusters, thereby facilitating their
classification and the identification of preventive measures. In this
context, Cluster Analysis is complemented by the XGBoost
algorithm: while CA generates diverse datasets, XGBoost identifies
patterns within them to predict potential errors. Although XGBoost
is not specific to clustering, its role will be discussed in detail later.

Recover the CA enables the grouping of software system components into [22][27][28][
software clusters, allowing the recovery and better understanding of system 33]
architecture architectures. It has been applied to organize and visualize

collections of similar design models, as well as to classify software
systems into categories with shared features, thereby simplifying the
visualization of architectures and supporting their replication in
future projects.

Break classes CA supports software design by decomposing classes into packages [25][34]
into packages or or subsystems that are easier to understand and manage. By
subsystems. segmenting data into homogeneous groups, it facilitates decision-
making and the identification of meaningful patterns in software
design.
Classify profiles Another application of CA in software design is automatic clustering [23]
of similar users. to group users with similar profiles, thereby improving their
management.

4.2 RQ2. What are the CA algorithms used in software design activities?

CA algorithms play a crucial role in uncovering patterns and structures within complex datasets, particularly when managing
large volumes of unlabeled data such as the elements of a software system. These algorithms automate the grouping of data
based on similarities, enabling the identification of clusters of elements that share common characteristics. From the analysis of
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the primary studies, a variety of Cluster Analysis algorithms applied to software design activities were identified. Among these,
the K-means algorithm emerged as the most prominent, and it will be discussed in greater detail below. Table 9 summarizes the
CA algorithms employed in software design. Table 10 presents the comparison between the algorithms reported in Table 9.

Table 9. Cluster analysis algorithms identified for software design activities.

Cluster analysis Description Studies
algorithm
K-means The K-means algorithm was primarily employed to cluster classes based on [23][24][25][

Density-Based  Spatial
Clustering of
Applications with Noise
(DBSCAN).

Fast Clustering
Algorithm (FCA).

Fuzzy C-means (FCM).

Mean Shift.

Multi-level Greedy

their identifiers. It is applied to efficiently group data and uncover
underlying structures in software design. The studies describe how metrics
and vectors are used to configure the algorithm, which then partitions the
vectors into k clusters, with k representing the number of groups defined by
the user.

To apply the DBSCAN algorithm, it must be configured with specific
parameters, such as group density. Unlike other clustering methods, studies
using DBSCAN did not need to predefine the number of clusters, as the
algorithm automatically determines them based on data distribution.

The FCA algorithm is applied to the modularization of large-scale software
systems. It operates on a dependency matrix derived from the source code
and was specifically designed to address the shortcomings of traditional
clustering algorithms, which often exhibit inefficiencies in time and space
when handling large or very large systems.

The FCM algorithm was used as part of the software modeling process. The
main objective of using FCM was to address the imprecision and
uncertainty present in the components when classifying the cluster. Before
applying the FCM algorithm, the Empirical Model Decomposition (EMD)
was used to extract the components that make up the groups; finally, the
FCM was applied to create fuzzy sets that represent the data.

The Mean Shift algorithm was used for the organization of multi-
dimensional groups, without the need to specify the exact cluster number.
This algorithm helped manage large amounts of data.

The use of the MGMC algorithm focuses on evaluating the effectiveness of

27][28] [34]

[28][34]

[22]

[29]

Modularity Clustering  the recovery of the software architecture. The MGMC algorithm can be
(MGMCQC). applied to dependency graphs to cluster them.
Table 10. Comparison of features reported by the clustering algorithms.
Cluster Use it when Advantages Disadvantages
algorithm
K-means e Clusters are roughly Very fast and scalable. Requires  predefining k
spherical and well- Easy to implement. [28][34].
separated [24]. Works well with large Sensitive to outliers.
datasets. Assumes spherical clusters.
Density-Based e (Clusters have Automatically detects Struggles  with  varying
Spatial irregular shapes. number of cluster [34]. densities.
Clustering  of e Detecting Handles arbitrary-shaped Sensitive to hyperparameters
Applications noise/outliers is clusters. (eps, minPts).
with Noise important. Good for noisy data [28].
(DBSCAN).
Fast Clustering e Working with very Very fast for massive Sometimes unstable
Algorithm large datasets where data. depending on initialization.
(FCA). exact methods are too Often parameter-free or
slow. low-parameter [22].
Fuzzy C-means e Objects can belong to Captures uncertainty and Requires  setting  cluster
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(FCM). multiple clusters. partial membership [29]. count.
Sensitive to noise/outliers.
Slower than K-means due to
fuzzy membership
computation.
Mean Shift. e Clusters are non- Does not require Highly sensitive to
spherical and specifying number of bandwidth parameter.
unknown in number. clusters [34].
e Data has clear density Captures arbitrary cluster
peaks. shapes.
Multi-level e Clustering is applied Detects hierarchical Applicable mainly to graph-
Greedy to  graphs/networks. modular structures. based data, not raw feature
Modularity e No need to specify vectors.
Clustering number of clusters [33].
(MGMCO).

4.3 RQ3. What tools are used for CA in software design activities?

From the analysis of the primary studies, several tools supporting the use of Cluster Analysis in software design activities were
identified. Notable similarities among these tools allowed for their classification. As shown in Table 11, the results were not
entirely as expected, since the two tools most directly associated with Cluster Analysis are platforms primarily oriented toward
machine learning. In addition, while studies mention the use of programming languages for implementing Cluster Analysis
algorithms, only one library specific to Python was reported. Furthermore, the complementary tool identified was the same

across studies, providing support mainly for prediction and error detection

Table 11. Tools used for cluster analysis in the design of software.

Tools for CA Description Studies
WEKA (Waikato WEKA is a platform used for machine learning, especially in data analysis [31]
Environment for and error prediction. WEKA can be used to compare the effectiveness of an
Knowledge Analysis)  optimized cluster model that combined logistic regression and tree classifier
for the purpose of classifying and predicting faults in the software system.
Programming languages and libraries for using Cluster Analysis

Python and sklearn It is a Python machine learning library that is widely used in developing [29][34]
artificial intelligence and machine learning applications. It is a powerful tool
that offers a wide range of functionalities for data processing and creating
predictive models.

R project The use of the R programming language is mentioned for the [29][34]
implementation of the FCM algorithm code, however, there is no
specification of the language’s own libraries used.

Matlab MATLAB is a software platform, especially useful for the implementation [31]
of machine learning techniques, such as Cluster Analysis.

Java The use of the Java programming language is mentioned for the [32]
implementation of the Cluster Analysis algorithm code, however, there is no
specification of the language's own packages used.

C++ The use of the C++ programming language is mentioned for the [32]
implementation of the Cluster Analysis algorithm code, however, there is no
specification of the language's own libraries used.

Complementary tools for Cluster Analysis
SHAP (Shapley SHAP assigns an importance value (positive or negative) to each feature in [30]

Additive exPlanations)

a particular prediction. These values allow you to summarize important
features and associate low and high feature values with an increase/decrease
in the output values (prediction).
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4.4 RQ4. What are the advantages of CA in software design activities?

From the analysis of the primary studies, 13 works reported advantages of applying Cluster Analysis in software design
activities. These benefits mainly concern improving the understanding of software architectures, enhancing design robustness,
and supporting better error prediction. Table 12 summarizes the advantages identified across the studies.

Table 12. Advantages of cluster analysis in the software design.

Advantages Description Studies
Better understanding of The use of Cluster Analysis in software design activities allows you to reduce [22][24][26]
software architecture the complexity of a system by replacing sets of artifacts with clusters that [27][28][34]
group artifacts with similarities, which facilitates the reuse of existing [35]
artifacts, the analysis of software systems and the identification of common
design patterns.
Better software The importance of design in the software development process must be [24][30][31]
robustness highlighted, with the application of CA, facilitating the understanding of the [32]
system, its design is facilitated, and therefore, better robustness of the
software is achieved.
Better error prediction ~ CA in software design helps detect patterns and group data, clustering with [29][30][31]
previously detected errors, improving the prediction of possible errors. [32]
Automate software With CA many software design processes such as class decomposition, [25][32]
design processes grouping of similar artifacts, and decomposition of the system into
subsystems can be automated.
Greater savings of time With CA applied in software design activities, as previously mentioned, class [24][25][32]
and effort for designers decomposition processes can be automated, thereby saving time and effort for
designers.
Facilitate reconstruction CA provides benefits such as the ability to identify code dependencies, [35]
of software architecture measure the impact of dependencies on the software architecture, and
facilitate the reconstruction of the software architecture thanks to the
breakdown of components and artifacts, grouped in clusters with similarities.
Greater efficiency in Thanks to the acceleration of software planning and design processes, it [31]

software programming.

causes a chain effect that helps save costs in development and in the efforts
and time of developers.

4.5 RQS. What are the challenges of CA in software design activities?

The analysis of the primary studies revealed nine works reporting challenges in applying Cluster Analysis to software design
activities. These challenges mainly concern the difficulty of determining which tools and algorithms are most suitable for
specific project contexts. Table 13 summarizes the challenges identified.

Table 13. Challenges of cluster analysis in the software design.

Challenges Description Studies
Identify optimal The complexity of modern software systems creates a need for effective tools [24][31][32]
techniques and tools and techniques to manage that complexity. During software design it is [34][35]
difficult to choose the optimal clustering technique to predict defects in
software design. It is emphasized that CA generally requires the integration
of tools and processes external to Cluster Analysis itself in order to be able to
apply it in the most efficient way.
Predict the optimal The use of the K-means algorithm for CA in various software design [25][28][34]

number of clusters activities was noted. One of the challenges identified in the studies concerns

predicting the optimal number of clusters (K) from term matrices and
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preparing larger datasets for more detailed evaluations. Since the algorithm
requires the configuration of parameters such as minimum distance and
density thresholds, its application to software system design can be complex,
particularly when determining the appropriate number of clusters to separate
system components.

Complement  Cluster It is highlighted that CA must be complemented with methods that explain [28]
Analysis with methods the results, such as principal components analysis in the case of clustering
to explain results based on metrics and a method to obtain the most descriptive terms of each
cluster in the case of clustering based on the chatbot vocabulary
Generalize results to Although CA shows to be effective in predicting defects in software design, a [30]
other projects significant challenge to its application is that by having to focus the
algorithms and tools on a specific case, it becomes a challenge to ensure that
the result of the application of Cluster Analysis to the design of a software
can be used in a different software design.
Ensure proper The challenge of complementing the Cluster Analysis with other methods to [32]
interpretation of results  explain the results obtained causes another challenge to arise and that is that
it cannot be guaranteed that the adequate interpretation of the results obtained
is carried out if the appropriate method is not used to complement the
explanation of these
Identify necessary Before starting the clustering process in software design activities, it is [22]

libraries and utilitie necessary to be clear about which programming language will be used, so
that in this way it can be identified which libraries and utilities will be

optimal for the use of CA.

5 Discussion of technical implications

The results of this review indicate that CA can play a meaningful role in software design by supporting the comprehension of
complex architectures, facilitating modular decomposition, and contributing to error prediction. Grouping components into
functional and reusable modules improves maintainability and system evolution, while the identification of anomalies or
unusual patterns can enhance reliability and reduce design-related risks. These findings suggest that, when applied with care,
CA can provide tangible benefits for both practitioners and researchers in software engineering.

At the same time, several challenges were identified. The complexity of current software systems complicates the choice of
appropriate clustering algorithms and tools, since their effectiveness depends on project-specific characteristics. In addition,
configuring parameters (such as the optimal number of clusters) remains a non-trivial task that directly impacts the quality of the
results. These limitations emphasize the importance of combining CA with complementary techniques and validation strategies
to ensure robust and meaningful outcomes. Furthermore, the synthesis obtained through this systematic review can be directly
integrated into software design practices in industrial environments. The analyzed clustering techniques provide actionable
guidance for structuring and reorganizing software artifacts, supporting early-stage design decisions, enhancing modularity, and
identifying architectural inconsistencies. These findings suggest practical opportunities for professionals, such as selecting
clustering algorithms according to data characteristics, incorporating automated clustering analysis into DevOps pipelines, and
using cluster-based insights to guide refactoring and reengineering efforts. Overall, the reviewed evidence highlights how
clustering methods can contribute to more informed, data-driven design processes in software engineering practice.

Finally, the absence of established standards or guidelines for applying CA in software design restricts the ability to generalize
results or define best practices. This review, therefore, provides an evidence-based overview rather than prescriptive
recommendations. For the research community, the findings highlight opportunities for methodological advances and
comparative studies, while for practitioners they offer a reference to better understand both the advantages and the constraints of
CA. In this way, the study lays the groundwork for future investigations and for the gradual integration of CA into broader
software engineering practices.

6 Threats to validity

To mitigate potential bias in the search, selection, and analysis of studies, several practices were implemented. An introductory
search was first conducted on the research topic, mainly focusing on Machine Learning and Cluster Analysis, to become
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familiar with the terminology used in this domain. This allowed for a more accurate selection of terms during the manual search
phase, which was performed following the methodology proposed by Zhang [20]. The evaluation of the search string was
carried out using the four data sources, ensuring that the automated search was based on a validated query.

Nevertheless, some threats to validity remain. A primary concern relates to the automated search, as article accessibility was
restricted by the institutional subscription. Consequently, potentially relevant studies available only through other subscriptions
were not included. Another limitation is that the most recent studies published after the cutoff date may not have been
considered, which could affect the completeness of the review.

Additional threats include the lack of venues directly dedicated to the topic, which limited the scope of potentially relevant
studies. To mitigate this, primary studies were selected individually through manual search before optimizing the automated
search. Moreover, there was a disproportionate distribution of studies across search engines, which could not be controlled or
reduced, as it depends on third-party indexing policies and the disciplinary scope of each database. For example, Springer Link,
being multidisciplinary, yielded fewer relevant studies, further constrained by restricted access.

7 Conclusions and Future work

This study reports the process and results of a systematic literature review aimed at identifying the application of Cluster
Analysis (CA) in software design activities, following the guidelines of Kitchenham [19], the methodology of Zhang [20], and
the narrative synthesis approach proposed by Popay [21]. To guide the review, five research questions were formulated and
addressed, providing insights into the current state of CA in this context. The findings suggest that CA can be a valuable tool in
software design, provided it is applied appropriately and its inherent challenges are considered. Specifically, CA facilitates the
identification of related groups of characteristics, enhances the understanding of complex architectures, supports the detection of
relevant patterns, and enables the grouping of components into functional and reusable modules (improving both maintainability
and evolution). Furthermore, CA contributes to reengineering and system adaptation by clarifying software structure and
organization. It may also aid in error prediction by detecting anomalies or unusual patterns in data.

However, the findings also highlight challenges. The complexity of modern software systems complicates the selection of
optimal CA algorithms or tools, and the results are not always generalizable across different systems. Additionally, the absence
of guidelines or standards for CA implementation in software design prevents the identification of recommended practices. As
such, this work does not propose a set of best practices but rather provides an evidence-based account of the current state of CA
in software design. The review is subject to limitations that may affect the depth of the findings, including restricted access to
certain studies and the cutoff date for primary study selection.

As future work, three additional reviews are planned, following the same methodology, to investigate the application of CA in
requirements engineering, construction activities, and software testing. This study is part of a broader monographic effort to
analyze the role of CA across software engineering, targeting both practitioners and researchers interested in CA and software
engineering.
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