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Abstract. Cluster analysis is an unsupervised machine learning 
approach that groups data into homogeneous categories without 

the need for predefined labels. Although it was not originally 

developed for software engineering, this technique has 
increasingly been applied to support various activities in the 

software design phase. However, information about its use remains 

scattered across different studies. To address this gap, this work 
presents a systematic literature review synthesizing the state of the 

art on the application of cluster analysis in software design. 

Following a rigorous selection process, 14 primary studies 
published between 2019 and 2025 were identified from four digital 

libraries: IEEE Xplore, ACM Digital Library, Springer Link, and 

ScienceDirect. This review highlights the contexts in which 
clustering has been applied, emphasizing its predominant role in 

class decomposition tasks and the frequent adoption of the K-

means algorithm, while also documenting the algorithms and tools 

used during design activities. Furthermore, the analysis discusses 

the benefits and challenges of adopting cluster analysis in this 

stage of development. The findings provide software engineering 
researchers and practitioners with a consolidated overview of the 

role of cluster analysis in software design, offering insights into its 

potential, limitations, and directions for future research and 
practice. 
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1 Introduction 
 

According to [1], Software Engineering (SE) is defined as “an engineering discipline that deals with all aspects of software 

production”. We can understand this as a set of activities divided into processes in order to develop a high quality software 

product. SE is based on the Software Development Life Cycle (SDLC), an abstract functional model that represents the 

conceptualization of a system’s need, its realization, use, and evolution [2]. The phases that are most present in software 

development are specification, definition of requirements, system and software design, implementation and unit testing, and 

operation and maintenance [1]. The purpose of all these activities, organized in stages, is to be able to build a good quality 

software project. One of the most important phases in the software engineering process is software design. Software design is 

the process of “translating software requirements into graphical models which help programmers in the implementation of the 

software” [3]. 

 

The software design stage is a crucial phase in the software development process, resulting in a design specification document 

for further use in program development [4]. Investing in a solid design early in the process helps prevent serious issues in later 

stages such as implementation, testing, or deployment, where errors become more costly and complex to resolve. In order to 

produce a quality product that meets the client's requirements, it is necessary to develop models that meet various aspects of the 

software and that are the link between the established requirements and the way in which a programmer should develop the 

software. A flexible, maintainable, extensible, and re-usable software design “enables easier integration of new requirements” 

[5], so activities usually performed in the software design phase such as the identification of similar design artifacts, Searching 
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for similar artifacts for reuse and identification of similar or repeated documentation can be automated by cluster analysis 

algorithms. 

 

On the other hand, artificial intelligence (AI) according to [6] can be understood as “systems or machines that can perform 

activities that require intelligence when performed by humans”. Recently, AI has become a very popular topic in the software-

related world. AI has allowed SE to mitigate some problems due to human bias and has favorably impacted the areas of software 

requirements [7], software design [8], and software testing [9]. By mixing both disciplines, they generate new areas of 

opportunity for research [10]. However, AI does not have special methodologies for the development of high-quality software, 

as well as methodologies that adapt to systems that are used for research and experimentation of artificial intelligence itself. For 

this reason, it is seen that SE can contribute to these needs to AI and therefore the collaboration of both disciplines is necessary 

to obtain better results in the two areas of research. 

 

The reliability and times necessary to carry out the development of a software project are usually influenced by many factors, 

mainly the human factor, which can be supported by AI. The need for automation and autonomous decision making have given 

rise to the application of AI and Machine Learning (ML) in software development activities, however, failures and deficiencies 

still occur in the resulting software systems [11]. According to [12] Machine Learning ’is the area of study that helps computers 

learn automatically’. This area of AI offers a wide field of research, since it can provide new techniques that solve automation 

problems in software product development processes. 

 

Machine Learning comprises three types of learning, supervised learning, unsupervised learning and reinforcement learning 

[13]. Supervised learning works under supervision and labeled data set, data that already knows the target. Unsupervised 

learning, unlike the previous one, works without supervision, that is, the data is not labeled and therefore only patterns are 

searched [13]. Reinforcement learning is very different from the other two types, as it is based on reward-based learning. In 

other words, doing a good job will result in a positive reward, otherwise a penalty. Reinforcement learning is composed of five 

steps: agent state, environment, reward, state and action [13]. 

 

This work focuses on the second type of learning, unsupervised learning, a technique called Cluster Analysis (CA), is a 

technique that seeks to group elements according to some similarity metric. According to [14], elements are grouped “according 

to the degree of similarity between them, they are divided into several groups, in this way similar objects constitute a set. This 

process is called the Grouping Process”. With this collection of information, research areas could be proposed to improve the 

results of the use of cluster analysis. In addition, it may be useful for software engineers, presenting a new perspective on how 

the grouping and search of different software artifacts (diagrams, documents, among others) can be optimized in the different 

phases of the SE. In a scientific utility, this collection of information explains the current state of the application of CA in the 

phases of SE.  

 

In conclusion, this work will provide a general overview for SE practitioners or researchers to know how Cluster Analysis can 

contribute to the various software design activities. 

 

The rest of this article is structured as follows: Section 2 presents previous studies related to AI and CA in SE. Section 3 

describes the research method used for this review. Section 4 shows the results, followed by the discussion of technical 

implications in Section 5. Section 6 presents the threats of validity. Finally, conclusions and future work are presented in Section 

7. 

 

2 Related Work 
 

To the best of our knowledge, no secondary study (systematic literature review, systematic mapping study, or survey) has been 

identified through manual search that specifically addresses the use of CA in activities of the software design phase. Table 1 

provides a summary of the reviews that we consider most closely related to our study. 
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Table 1. Related work focused on CA in SE (RQ: Research Question, SSV: Search String Validation, R: Reported, NR: 

Not Reported, QA: Quality Assessment, NS: Number of Studies, DS: Date of Studies) 

Study SSV QA NS DS RQ 

Juziuk et al. [15] NR NR 39 1998-

2012 

RQ1: How are the patterns documented and what pattern templates are used? 

RQ2: How are the design patterns connected? 

RQ3: For what types of systems have the design patterns been applied? 

RQ4: How can the design patterns be classified? 

Batarseh et al. [16] NR NR 190 1975-

2017 

RQ1: Is there sufficient intelligence in the SE lifecycle? 

RQ2: What does applying AI to SE entail? 

Robles-Aguilar et 

al. [8] 

NR NR 36 2015-

2020 

RQ1: What Software Design activities have been carried out with AI? 

RQ2: What AI techniques have been used in Software Design? 

RQ3: In what design activities are AI techniques used and how many reports 

are of that use? 

RQ4: What software design artifacts have been made with AI techniques? 

RQ5: What is the purpose of using AI software design? 

RQ6: What are the most frequented venues to publish papers on this topic? 

Chaudhry et al. 

[17] 

NR R 58 1995-

2023 

RQ1. What approaches and algorithms are currently available in clustering? 

RQ2. What are the benefits and drawbacks of various clustering techniques? 

RQ3. What are the clustering evaluation measures to consider when selecting a 

centroid finding method? 

RQ4. What are the applications or fields where some clustering algorithms 

outperform others? 

Mecarder-Olivares 

et al. [18] 

R NR 15 2019-

2024 

RQ1 What clustering algorithms have been used in software development with 

agile methodologies to identify patterns? 

RQ2. In which development phases have clustering algorithms been most 

applied to identify patterns in software development with agile methodologies? 

RQ3. What types of systems have applied clustering algorithms to identify 

patterns in software development with agile methodologies? 

RQ4. What are the advantages of using clustering algorithms to identify 

patterns in software development with agile methodologies? 

RQ5. What are the challenges of using clustering algorithms to identify 

patterns in software development with agile methodologies? 

 

 

In [15], a review in the area of software design is presented with the aim of reporting methods for detecting, documenting, and 

classifying design patterns. The authors note that clustering techniques can be applied to identify different types of design 

patterns. In [16], the authors conducted a review of the application of Artificial Intelligence (AI) in Software Engineering across 

all phases of the development process from 1975 to 2017. Specifically, for the design phase, only 12 studies applying AI were 

identified, focusing primarily on tasks such as self-adaptation to dynamic software architectures, applying self-adaptation to 

autonomous agents, and evaluating architectures. However, these tasks were mainly supported by expert systems or agents, 

without the involvement of clustering algorithms. 

 

In [8], a systematic literature review (SLR) was conducted on design activities supported by AI in general between 2015 and 

2020. The most frequently reported software design activities included the generation of design diagrams, architectural smell 

detection, design pattern detection, and product line architecture design. Nevertheless, the most common AI techniques were 

supervised learning methods, particularly for classification tasks, such as artificial neural networks, support vector machines, 

and decision trees. Notably, this study did report some work using K-means and K-medoids for design pattern classification. 

 

In [17], the authors explored almost 20 years (1995–2023) of research on identifying patterns using unsupervised clustering 

algorithms. While this work is indeed based on clustering applications, it does not specifically target Software Engineering, and 

even less so activities within the software design phase. 

 

Finally, in the most recent work [18], the authors conducted an SLR on clustering across different phases of software 

development. However, their focus was on agile development methodologies. They reported that the most widely used 

algorithms include K-means, hierarchical clustering, K-medoids, single linkage clustering, and complete linkage clustering, 
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among others. Their findings, however, were primarily related to software requirements and testing activities within agile 

methodologies. 

 

A review of these secondary studies on clustering or AI in Software Engineering reveals a clear gap: no existing work provides 

practitioners with consolidated findings that help them understand clustering algorithms and tools in a way that facilitates 

software design activities. Moreover, there is a lack of studies that demonstrate how clustering can support the identification of 

patterns and the detection of similar artifacts in this critical phase of software development. 

 

 

3 Research method 
 

To carry out the systematic review, the guidelines of the methodology proposed by Kitchenham et al. [19] was followed. This 

methodology consists of three stages: planning, conduction and reporting.  

3.1 Planning Stage 
 

At this stage, research questions are posed, search terms are defined, the search string is constructed, and selection criteria are 

established.  

 

3.1.1 Research Questions 

 
For this review, five research questions were established, which aim to find relevant information related to the application of 

Cluster Analysis in software design activities. Table 2 shows the research questions that guide this review. 

Table 2. Research questions. 

ID Research question Motivation 

RQ1 What are the activities in the software 

design engineering where CA has been 

used? 

It is important to know the different activities within 

software design used in CA to identify which ones have 

the greatest impact. 

RQ2 What are the CA algorithms used in 

software design activities? 

It is important to know the different CA algorithms that 

are used in software design to provide valuable 

information on how to use cluster analysis to improve 

the requirements phase. 

RQ3 What tools are used for CA in software 

design activities? 

Knowledge of the CA tools is important, since the choice 

of the right tool is an important factor in achieving 

successful results. 

RQ4 What are the advantages of CA in 

software design activities? 

Software design is of utmost importance, knowing the 

advantages of CA in the activities in this phase can 

provide valuable information to improve the generation 

and recovery of design artifacts. 

RQ5 What are the challenges of CA in 

software design activities?  

Knowing the challenges of CA in software design 

activities can provide valuable insights into how to 

address challenges and get the most out of CA. 

 

3.1.2 Data sources 

 
Table 3 shows the selected data sources for the automated search, which were selected from the software engineering research 

ranking presented by Zhang et. al. [20]. 

Table 3. Data sources 

Data source Web site 

ACM Digital Library https://dl.acm.org/ 

IEEE Xplore https://ieeexplore.ieee.org/ 

Science Direct https://www.sciencedirect.com/ 

Springer Link  https://link.springer.com/ 
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3.1.3 Search Terms 
 

From the research questions, the search terms along with their related terms were selected and they are shown in Table 4. 

Table 4. Search terms. 

Keyword Related Terms 

Cluster Analysis Clustering 

Machine Learning - 

Design Software Design 

Technique Method, approach, algorithm 

Tools Software, Application 

 

3.1.4 Search string 

 

With the Table 4 it can be seen that five key terms were found, with cluster analysis and software design being the terms of 

greatest interest for this research. Seven search strings were constructed with these terms, which were tested through search 

iterations. For the evaluation of the strings, the Quasi-gold standard was used, using the metrics proposed by Zhang [20] that 

will be described below. 

 

In order to perform the automated search, various search strings were performed with various combinations of the search terms. 

To evaluate the search strings, the guidelines proposed by Zhang [20] were used, the relevant articles are used to evaluate the 

sensitivity and precision, mentioned by the methodology as Recall and Precision respectively; same as are calculated with (1) 

and (2) respectively. 

 

Recall = Retrieved relevant studies / Relevant studies. (1) 

Precision = Retrieved relevant studies / Retrieved studies (2) 

 

The seven search strings where the recall and precision metrics were applied based on five relevant studies found manually. The 

selected search string was the one that reached a recall = 1 (although a recall = 0.8 is acceptable [20]) and precision = 1.8 which 

is shown below. 

"software design" AND ("machine learning" OR "clustering") 

 

3.1.5 Selection Criteria 

 

Table 5 presents the inclusion and exclusion criteria that were used for the selection of primary studies in the automated search. 

Table 5. Selection criteria. 

ID Inclusion criteria 

IC1 Studies were published between 2019 and 2025. 

IC2 Studies written in the English language. 

IC3 Full access to the studio is available. 

IC4 The title and abstract answer at least one research question. 

IC5 The study answers at least one research question. 

ID Exclusion criteria 

EC1 In multidisciplinary sources, the study is not in engineering or computer science. 

EC2 The study is a slide presentation, technical report or chapter of a book. 

EC3 The study is duplicated. 

 

For the selection of primary studies, automated searches are performed with previously selected search strings and the results 

are subsequently filtered by applying the inclusion and exclusion criteria. These criteria were assigned in four stages. Fig. 1 

shows the stages for the selection process of primary studies. Table 6 shows the results of selection process of the primary 

studies. 
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Fig. 1. Primary studies selection process. 

 

 

 

3.2 Reporting 

 

The narrative synthesis was conducted by following the procedures outlined by Popay et al. [21]. This process involved 

analyzing the findings and organizing them according to each of the research questions. To achieve this, the results were 

grouped by research question, and relevant text fragments were extracted from the primary studies. These excerpts were then 

tabulated to provide structured responses to the research questions. Once the tabulation was completed, related data were further 

clustered, resulting in a systematic classification of the evidence in line with the research questions. 

 

4. Results 
 

Table 6 shows the results of the selection process of primary studies by phase, where it can be seen that in the initial search 

15,196 studies were obtained. In Table 6 It can be observed that the stage in which most articles were excluded was the first one, 

primarily due to the year of publication criterion. In stage 3, the criterion that led to the highest number of exclusions was IC4, 

which involved reviewing the title and abstract in relation to the research questions. 

Table 6. Results of the primary studies selection process. 

Source of information Initial search Stage 1 Stage 2 Stage 3 Stage 4 

IEEE Xplore 460 231 231 8 6 

SpringerLink 4,422 2,337 2,001 10 1 

ACM Digital Library 3,130 1,825 513 4 1 

ScienceDirect 7,185 3,464 2,071 6 6 

Total 15,197 7,857 4,816 28 14 

 

Table 7 presents the primary studies selected by source, showing that IEEE Xplore and Springer Link were the venues with the 

highest number of publications. Figure 2 illustrates the distribution by year of publication, where a relatively constant output can 

be observed; however, as of July 2025, no primary study directly related to the topic was identified. 

Table 7. Selected primary studies. 

Data source References 

IEEE Xplore [22][23][24][25][26][27] 

ACM Digital Library [28] 

ScienceDirect [29] 

Springer Link [30][31][32][33][34][35] 
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Fig. 2. Number of selected studies per year. 

 

 

4.1 RQ1. What are the activities in the software design engineering where CA has been used? 
 

As shown in Table 8, the activities in which CA is applied are primarily related to improving the understanding of software 

systems by decomposing them into less complex subsystems. CA groups the elements required in software design into simpler 

packages, thereby facilitating both comprehension and management of the system. An additional key application of CA is the 

identification and prediction of design errors, enabling their prevention or the establishment of contingency plans when 

necessary. 

Table 8. Software design activities in which Cluster Analysis was used. 

Activities of 

software design 

Description Studies 

Predict defects in 

software design. 

For error prediction in software design, Cluster Analysis has proven 

to be a valuable tool. It has been applied to assess the weight of risks 

and to group them into clusters, thereby facilitating their 

classification and the identification of preventive measures. In this 

context, Cluster Analysis is complemented by the XGBoost 

algorithm: while CA generates diverse datasets, XGBoost identifies 

patterns within them to predict potential errors. Although XGBoost 

is not specific to clustering, its role will be discussed in detail later. 

[30][31][32] 

Recover the 

software 

architecture 

CA enables the grouping of software system components into 

clusters, allowing the recovery and better understanding of system 

architectures. It has been applied to organize and visualize 

collections of similar design models, as well as to classify software 

systems into categories with shared features, thereby simplifying the 

visualization of architectures and supporting their replication in 

future projects. 

[22][27][28][

33] 

Break classes 

into packages or 

subsystems. 

CA supports software design by decomposing classes into packages 

or subsystems that are easier to understand and manage. By 

segmenting data into homogeneous groups, it facilitates decision-

making and the identification of meaningful patterns in software 

design. 

[25][34] 

Classify profiles 

of similar users. 

Another application of CA in software design is automatic clustering 

to group users with similar profiles, thereby improving their 

management. 

[23] 

 

 

4.2 RQ2. What are the CA algorithms used in software design activities? 

 
CA algorithms play a crucial role in uncovering patterns and structures within complex datasets, particularly when managing 

large volumes of unlabeled data such as the elements of a software system. These algorithms automate the grouping of data 

based on similarities, enabling the identification of clusters of elements that share common characteristics. From the analysis of 
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the primary studies, a variety of Cluster Analysis algorithms applied to software design activities were identified. Among these, 

the K-means algorithm emerged as the most prominent, and it will be discussed in greater detail below. Table 9 summarizes the 

CA algorithms employed in software design. Table 10 presents the comparison between the algorithms reported in Table 9. 

Table 9. Cluster analysis algorithms identified for software design activities. 

Cluster analysis 

algorithm 

Description Studies 

K-means The K-means algorithm was primarily employed to cluster classes based on 

their identifiers. It is applied to efficiently group data and uncover 

underlying structures in software design. The studies describe how metrics 

and vectors are used to configure the algorithm, which then partitions the 

vectors into k clusters, with k representing the number of groups defined by 

the user. 

[23][24][25][

27][28] [34] 

Density-Based Spatial 

Clustering of 

Applications with Noise 

(DBSCAN). 

To apply the DBSCAN algorithm, it must be configured with specific 

parameters, such as group density. Unlike other clustering methods, studies 

using DBSCAN did not need to predefine the number of clusters, as the 

algorithm automatically determines them based on data distribution. 

[28][34] 

Fast Clustering 

Algorithm (FCA). 

The FCA algorithm is applied to the modularization of large-scale software 

systems. It operates on a dependency matrix derived from the source code 

and was specifically designed to address the shortcomings of traditional 

clustering algorithms, which often exhibit inefficiencies in time and space 

when handling large or very large systems. 

[22] 

Fuzzy C-means (FCM). The FCM algorithm was used as part of the software modeling process. The 

main objective of using FCM was to address the imprecision and 

uncertainty present in the components when classifying the cluster. Before 

applying the FCM algorithm, the Empirical Model Decomposition (EMD) 

was used to extract the components that make up the groups; finally, the 

FCM was applied to create fuzzy sets that represent the data. 

[29] 

Mean Shift. The Mean Shift algorithm was used for the organization of multi-

dimensional groups, without the need to specify the exact cluster number. 

This algorithm helped manage large amounts of data. 

[34] 

Multi-level Greedy 

Modularity Clustering 

(MGMC). 

The use of the MGMC algorithm focuses on evaluating the effectiveness of 

the recovery of the software architecture. The MGMC algorithm can be 

applied to dependency graphs to cluster them. 

[33] 

 

Table 10. Comparison of features reported by the clustering algorithms. 

Cluster 

algorithm 

Use it when Advantages Disadvantages 

K-means • Clusters are roughly 

spherical and well-

separated [24]. 

• Very fast and scalable. 

• Easy to implement.  

• Works well with large 

datasets. 

• Requires predefining k 

[28][34]. 

• Sensitive to outliers. 

• Assumes spherical clusters. 

Density-Based 

Spatial 

Clustering of 

Applications 

with Noise 

(DBSCAN). 

• Clusters have 

irregular shapes. 

• Detecting 

noise/outliers is 

important. 

• Automatically detects 

number of cluster [34]. 

• Handles arbitrary-shaped 

clusters.  

• Good for noisy data [28]. 

• Struggles with varying 

densities.  

• Sensitive to hyperparameters 

(eps, minPts). 

Fast Clustering 

Algorithm 

(FCA). 

• Working with very 

large datasets where 

exact methods are too 

slow. 

• Very fast for massive 

data.  

• Often parameter-free or 

low-parameter [22]. 

• Sometimes unstable 

depending on initialization. 

Fuzzy C-means • Objects can belong to • Captures uncertainty and • Requires setting cluster 
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(FCM). multiple clusters.  partial membership [29]. count.  

• Sensitive to noise/outliers.  

Slower than K-means due to 

fuzzy membership 

computation. 

Mean Shift. • Clusters are non-

spherical and 

unknown in number. 

• Data has clear density 

peaks. 

• Does not require 

specifying number of 

clusters [34]. 

• Captures arbitrary cluster 

shapes. 

• Highly sensitive to 

bandwidth parameter. 

Multi-level 

Greedy 

Modularity 

Clustering 

(MGMC). 

• Clustering is applied 

to graphs/networks.  

 

• Detects hierarchical 

modular structures. 

• No need to specify 

number of clusters [33]. 

• Applicable mainly to graph-

based data, not raw feature 

vectors. 

 

4.3 RQ3. What tools are used for CA in software design activities? 
 

From the analysis of the primary studies, several tools supporting the use of Cluster Analysis in software design activities were 

identified. Notable similarities among these tools allowed for their classification. As shown in Table 11, the results were not 

entirely as expected, since the two tools most directly associated with Cluster Analysis are platforms primarily oriented toward 

machine learning. In addition, while studies mention the use of programming languages for implementing Cluster Analysis 

algorithms, only one library specific to Python was reported. Furthermore, the complementary tool identified was the same 

across studies, providing support mainly for prediction and error detection 

 

Table 11. Tools used for cluster analysis in the design of software. 

Tools for CA Description Studies 

WEKA (Waikato 

Environment for 

Knowledge Analysis) 

WEKA is a platform used for machine learning, especially in data analysis 

and error prediction. WEKA can be used to compare the effectiveness of an 

optimized cluster model that combined logistic regression and tree classifier 

for the purpose of classifying and predicting faults in the software system. 

[31] 

Programming languages and libraries for using Cluster Analysis 

Python and sklearn It is a Python machine learning library that is widely used in developing 

artificial intelligence and machine learning applications. It is a powerful tool 

that offers a wide range of functionalities for data processing and creating 

predictive models. 

[29][34] 

R project The use of the R programming language is mentioned for the 

implementation of the FCM algorithm code, however, there is no 

specification of the language’s own libraries used. 

[29][34] 

Matlab MATLAB is a software platform, especially useful for the implementation 

of machine learning techniques, such as Cluster Analysis. 

[31] 

Java The use of the Java programming language is mentioned for the 

implementation of the Cluster Analysis algorithm code, however, there is no 

specification of the language's own packages used. 

[32] 

C++ The use of the C++ programming language is mentioned for the 

implementation of the Cluster Analysis algorithm code, however, there is no 

specification of the language's own libraries used. 

[32] 

Complementary tools for Cluster Analysis 

SHAP (Shapley 

Additive exPlanations) 

SHAP assigns an importance value (positive or negative) to each feature in 

a particular prediction. These values allow you to summarize important 

features and associate low and high feature values with an increase/decrease 

in the output values (prediction). 

[30] 
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4.4 RQ4. What are the advantages of CA in software design activities? 
 

From the analysis of the primary studies, 13 works reported advantages of applying Cluster Analysis in software design 

activities. These benefits mainly concern improving the understanding of software architectures, enhancing design robustness, 

and supporting better error prediction. Table 12 summarizes the advantages identified across the studies. 

 

Table 12. Advantages of cluster analysis in the software design. 

Advantages Description Studies 

Better understanding of 

software architecture 

The use of Cluster Analysis in software design activities allows you to reduce 

the complexity of a system by replacing sets of artifacts with clusters that 

group artifacts with similarities, which facilitates the reuse of existing 

artifacts, the analysis of software systems and the identification of common 

design patterns. 

[22][24][26]

[27][28][34]

[35] 

Better software 

robustness 

The importance of design in the software development process must be 

highlighted, with the application of CA, facilitating the understanding of the 

system, its design is facilitated, and therefore, better robustness of the 

software is achieved. 

[24][30][31]

[32] 

Better error prediction CA in software design helps detect patterns and group data, clustering with 

previously detected errors, improving the prediction of possible errors. 

[29][30][31]

[32] 

Automate software 

design processes 

With CA many software design processes such as class decomposition, 

grouping of similar artifacts, and decomposition of the system into 

subsystems can be automated. 

[25][32] 

Greater savings of time 

and effort for designers 

With CA applied in software design activities, as previously mentioned, class 

decomposition processes can be automated, thereby saving time and effort for 

designers. 

[24][25][32] 

Facilitate reconstruction 

of software architecture 

CA provides benefits such as the ability to identify code dependencies, 

measure the impact of dependencies on the software architecture, and 

facilitate the reconstruction of the software architecture thanks to the 

breakdown of components and artifacts, grouped in clusters with similarities. 

[35] 

Greater efficiency in 

software programming. 

Thanks to the acceleration of software planning and design processes, it 

causes a chain effect that helps save costs in development and in the efforts 

and time of developers. 

[31] 

 

 

 

4.5 RQ5. What are the challenges of CA in software design activities? 
 

The analysis of the primary studies revealed nine works reporting challenges in applying Cluster Analysis to software design 

activities. These challenges mainly concern the difficulty of determining which tools and algorithms are most suitable for 

specific project contexts. Table 13 summarizes the challenges identified. 

 

Table 13. Challenges of cluster analysis in the software design. 

Challenges Description Studies 

Identify optimal 

techniques and tools 

The complexity of modern software systems creates a need for effective tools 

and techniques to manage that complexity. During software design it is 

difficult to choose the optimal clustering technique to predict defects in 

software design. It is emphasized that CA generally requires the integration 

of tools and processes external to Cluster Analysis itself in order to be able to 

apply it in the most efficient way. 

[24][31][32] 

[34][35] 

Predict the optimal 

number of clusters 

The use of the K-means algorithm for CA in various software design 

activities was noted. One of the challenges identified in the studies concerns 

predicting the optimal number of clusters (K) from term matrices and 

[25][28][34] 
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preparing larger datasets for more detailed evaluations. Since the algorithm 

requires the configuration of parameters such as minimum distance and 

density thresholds, its application to software system design can be complex, 

particularly when determining the appropriate number of clusters to separate 

system components. 

Complement Cluster 

Analysis with methods 

to explain results 

It is highlighted that CA must be complemented with methods that explain 

the results, such as principal components analysis in the case of clustering 

based on metrics and a method to obtain the most descriptive terms of each 

cluster in the case of clustering based on the chatbot vocabulary 

[28] 

Generalize results to 

other projects 

Although CA shows to be effective in predicting defects in software design, a 

significant challenge to its application is that by having to focus the 

algorithms and tools on a specific case, it becomes a challenge to ensure that 

the result of the application of Cluster Analysis to the design of a software 

can be used in a different software design. 

[30] 

Ensure proper 

interpretation of results 

The challenge of complementing the Cluster Analysis with other methods to 

explain the results obtained causes another challenge to arise and that is that 

it cannot be guaranteed that the adequate interpretation of the results obtained 

is carried out if the appropriate method is not used to complement the 

explanation of these 

[32] 

Identify necessary 

libraries and utilitie 

Before starting the clustering process in software design activities, it is 

necessary to be clear about which programming language will be used, so 

that in this way it can be identified which libraries and utilities will be 

optimal for the use of CA. 

[22] 

 

5 Discussion of technical implications 

 
The results of this review indicate that CA can play a meaningful role in software design by supporting the comprehension of 

complex architectures, facilitating modular decomposition, and contributing to error prediction. Grouping components into 

functional and reusable modules improves maintainability and system evolution, while the identification of anomalies or 

unusual patterns can enhance reliability and reduce design-related risks. These findings suggest that, when applied with care, 

CA can provide tangible benefits for both practitioners and researchers in software engineering. 

 

At the same time, several challenges were identified. The complexity of current software systems complicates the choice of 

appropriate clustering algorithms and tools, since their effectiveness depends on project-specific characteristics. In addition, 

configuring parameters (such as the optimal number of clusters) remains a non-trivial task that directly impacts the quality of the 

results. These limitations emphasize the importance of combining CA with complementary techniques and validation strategies 

to ensure robust and meaningful outcomes. Furthermore, the synthesis obtained through this systematic review can be directly 

integrated into software design practices in industrial environments. The analyzed clustering techniques provide actionable 

guidance for structuring and reorganizing software artifacts, supporting early-stage design decisions, enhancing modularity, and 

identifying architectural inconsistencies. These findings suggest practical opportunities for professionals, such as selecting 

clustering algorithms according to data characteristics, incorporating automated clustering analysis into DevOps pipelines, and 

using cluster-based insights to guide refactoring and reengineering efforts. Overall, the reviewed evidence highlights how 

clustering methods can contribute to more informed, data-driven design processes in software engineering practice. 

 

Finally, the absence of established standards or guidelines for applying CA in software design restricts the ability to generalize 

results or define best practices. This review, therefore, provides an evidence-based overview rather than prescriptive 

recommendations. For the research community, the findings highlight opportunities for methodological advances and 

comparative studies, while for practitioners they offer a reference to better understand both the advantages and the constraints of 

CA. In this way, the study lays the groundwork for future investigations and for the gradual integration of CA into broader 

software engineering practices. 

 

6 Threats to validity 
 

To mitigate potential bias in the search, selection, and analysis of studies, several practices were implemented. An introductory 

search was first conducted on the research topic, mainly focusing on Machine Learning and Cluster Analysis, to become 
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familiar with the terminology used in this domain. This allowed for a more accurate selection of terms during the manual search 

phase, which was performed following the methodology proposed by Zhang [20]. The evaluation of the search string was 

carried out using the four data sources, ensuring that the automated search was based on a validated query. 

 

Nevertheless, some threats to validity remain. A primary concern relates to the automated search, as article accessibility was 

restricted by the institutional subscription. Consequently, potentially relevant studies available only through other subscriptions 

were not included. Another limitation is that the most recent studies published after the cutoff date may not have been 

considered, which could affect the completeness of the review. 

 

Additional threats include the lack of venues directly dedicated to the topic, which limited the scope of potentially relevant 

studies. To mitigate this, primary studies were selected individually through manual search before optimizing the automated 

search. Moreover, there was a disproportionate distribution of studies across search engines, which could not be controlled or 

reduced, as it depends on third-party indexing policies and the disciplinary scope of each database. For example, Springer Link, 

being multidisciplinary, yielded fewer relevant studies, further constrained by restricted access. 

 

7 Conclusions and Future work 
 

This study reports the process and results of a systematic literature review aimed at identifying the application of Cluster 

Analysis (CA) in software design activities, following the guidelines of Kitchenham [19], the methodology of Zhang [20], and 

the narrative synthesis approach proposed by Popay [21]. To guide the review, five research questions were formulated and 

addressed, providing insights into the current state of CA in this context. The findings suggest that CA can be a valuable tool in 

software design, provided it is applied appropriately and its inherent challenges are considered. Specifically, CA facilitates the 

identification of related groups of characteristics, enhances the understanding of complex architectures, supports the detection of 

relevant patterns, and enables the grouping of components into functional and reusable modules (improving both maintainability 

and evolution). Furthermore, CA contributes to reengineering and system adaptation by clarifying software structure and 

organization. It may also aid in error prediction by detecting anomalies or unusual patterns in data. 

 

However, the findings also highlight challenges. The complexity of modern software systems complicates the selection of 

optimal CA algorithms or tools, and the results are not always generalizable across different systems. Additionally, the absence 

of guidelines or standards for CA implementation in software design prevents the identification of recommended practices. As 

such, this work does not propose a set of best practices but rather provides an evidence-based account of the current state of CA 

in software design. The review is subject to limitations that may affect the depth of the findings, including restricted access to 

certain studies and the cutoff date for primary study selection. 

 

As future work, three additional reviews are planned, following the same methodology, to investigate the application of CA in 

requirements engineering, construction activities, and software testing. This study is part of a broader monographic effort to 

analyze the role of CA across software engineering, targeting both practitioners and researchers interested in CA and software 

engineering. 
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