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1 Introduction 
 

Blockchain represents a significant opportunity for both industry and academia, as it enables innovation in traditional processes 

and models through secure, transparent, and decentralized records. In industry, it facilitates product traceability, improves the 

efficiency of supply chains, and strengthens trust in digital transactions. In the academic domain, it opens new lines of 

interdisciplinary research, fosters the development of technological solutions, and enables the secure and verifiable certification 

of academic achievements (Soto, 2025). 

 

An essential element of Blockchain is Smart Contracts (Soto, 2025). These are self-executing agreements whose terms (design 

rules) are directly embedded in code. Such contracts are stored and executed on a Blockchain network and automatically enforce 

the agreed terms once predefined conditions are met. Consequently, it is crucial to ensure that the code is written in a consistent, 

precise, and secure manner to prevent vulnerabilities and unintended consequences. 

 

The design of Smart Contracts constitutes a critical process, since any contradiction, imprecision, or careless handling of 

functions may result in operational failures or, more critically, in system vulnerabilities affecting the applications that rely on 

such contracts. A distinctive feature of Smart Contracts is their automated execution; therefore, if the design phase neglects to 

rigorously define their specifications, issues may arise such as: 

 

If there are sufficient funds in the account, any user may execute a withdrawal. 

 

Followed by a specification that may be: 

 

User Alice is not permitted to execute a withdrawal under any circumstances. 

 

Intuitively, it can be observed that such a design would contain contradictory specifications and, therefore, exhibit an 

inconsistency that may result in a malfunction or even create a vulnerability that compromises the Blockchain-based system. 

 

The problem motivates the development of a verification system for Smart Contract designs, grounded in OWL and Description 

Logics. Design-time verification provides the advantage of allowing adjustments to the design rules of Smart Contracts prior to 

their implementation into code. 
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Fig. 1. DL Verification System Proposal. 

 

Our proposal is described through a verification framework; Figure 1 presents the proposed architecture of the verifier. The 

input (Block 1) consists of the rules incorporated into the contract design, represented as functional requirements. Block 2 

illustrates the step of expressing these rules in terms of OWL; this step formalizes the rules as an ontology, enabling logical 

verification. 

 

In the subsequent block (Block 3), the verification process is performed. Here, the verifier interacts with a knowledge base of 

vulnerabilities (Block 4) to inform the contract designer whether the rules exhibit weaknesses that could compromise the 

functionality or execution outcomes of the contract. If inconsistencies (logical contradictions) are detected, the verifier identifies 

the specific rules that cause such inconsistencies so that the designer may adjust the contract design accordingly (Block 8). 

 

If no inconsistencies are found, the rules expressed in OWL are translated into the general grammar underlying Smart Contracts 

(Block 6), with the assistance of a Large Language Model (Block 5) (Chang, Wang, Wang, Wu, Yang, Zhu, & Xie, 2024). This 

grammar is then employed to generate verified, inconsistency-free code (Block 9). An important addition is the algorithm 

(Block 7), which generates Finite State Machines (Block 10) from the grammar (Block 6) to project the expected behavior of the 

Smart Contract code at the time of implementation. 

 

There are various implemented systems based on Description Logics, which offer a palette of description formalisms with 

differing expressive power, and which are employed in various application domains such as natural language processing, 

configuration of technical products, or databases. On the other hand, the ontology language being used should have precisely 

defined semantics and should be amenable to automated processing. Description Logics appear to be ideally suited to this role: 

they have formal, logic-based semantics, and are often equipped with decision procedures that have been designed with the 

objective of being implemented in automated reasoning systems (Horrocks, Sattler, & Tobies, 1998).  

 

The above view shows the potential place of Description Logics in the Semantic Web led to the development of several 

languages that brought Description Logic concepts to the Semantic Web, culminating in the development of the Web Ontology 

Language OWL. OWL is the World Wide Web Consortium (W3C) recommended ontology language for the Semantic Web, and 

exploits many of the strengths of Description Logics, including well defined semantics and practical reasoning techniques. 

Additionally, there are reasoning tools to perform formal verification, some of these tools use OWL as an input language to 

verify expressions such as Smart Contracts rules in their design (McGuinness & van Harmelen, 2004). 

 

The primary objective of the verification system is to formally verify the rules inside the Smart Contracts, at the beginning of 

the Smart Contract life cycle, in the development phase, specifically the design stage. To ensure a secure implementation of the 

rules into a programming language at later phases in the life cycle. 
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The main contributions of this proposal are the formal definition of consistency in the design of Smart Contract rules, and the 

representation of these rules in OWL to perform the formal verification that constitutes the core of this system. 

 

The structure of this work is organized as follows: in Section 2, we discuss previous research to provide context for this study. 

Then in Section 3 we define the Smart Contracts as a Description Logics knowledge base and introduce the concept of 

consistency. Next, in Section 4 we use the consistency definition to model real life Smart Contracts as a result that shows how 

consistency can be verified in Description Logics terms. Finally, we present the finite state machines generation algorithm, to 

illustrate the potential of the additional features of the system verification proposal from this study. 

 

2 Related work 
 

Description Logics have a wide range of applications, such as in Software Engineering to support the program understanding 

process for programmers involved in software maintenance (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2007), 

to solve a wide variety of problems, with configuration applications (Baader et al., 2007). Also, there are at least five 

applications in medical informatics such as terminology, intelligent user interfaces, decision support and semantic indexing, 

language technology, and systems integration (Baader et al., 2007). In most natural language processing applications, 

Description Logics have been used to encode in a knowledge base some syntactic, semantic, and pragmatic elements needed to 

drive the semantic interpretation and the natural language generation processes (Baader et al., 2007). In general, it is applied to 

understand the issues involved in developing an ontology for some universes of discourse, which is to become a conceptual 

model or knowledge base represented and reasoned about using Description Logics (Baader et al., 2007). 

 

With respect to formal verification of Smart Contracts, in Formal Verification of Blockchain Smart Contracts via ALT Model 

Checking (Nam, & Kil, 2022), it used the Alternating-time Temporal Logic (ATL) model-checking method, which analyzes 

whether a given system satisfies a specific property. Blockchain Smart Contracts represent user interaction and Smart Contracts 

as a two-player game and verify the desired properties using a model checker for multi-agent systems (MCMAS). In verifying 

Ethereum smart contract bytecode in Isabelle/HOL (Amani, Bégel, Bortin, & Staples, 2018), the authors employed the 

Isabelle/HOL theorem prover alongside an existing EVM-formal model to validate smart contract bytecode. Their objective was 

to establish a robust program logic for verification purposes. In Finding the Greedy, Prodigal, and Suicidal Contracts at Scale 

(Nikolić, Kolluri, Sergey, Saxena, & Hobor, 2018), the authors developed a dynamic tool to scrutinize contracts to identify 

vulnerabilities within extended sequences of contract invocations. ContractFuzzer: fuzzing smart contracts for vulnerability 

detection (Jiang, Liu, & Chan, 2018) describes using ContractFuzzer, a dynamic tool that employs Fuzz testing to identify 

vulnerabilities in smart contracts.  

 

On the other hand, the approach described in Formal Modeling and Verification of Smart Contracts (Bai, Cheng, Duan, & Hu, 

2018) integrates formal methods with Smart Contracts to minimize errors and costs in the contract development phase. A 

standard Smart Contract template is generated by applying formal methods to Smart Contracts, which can be represented using 

tuple and finite state machine concepts. Although these applications implement formal verification in Smart Contracts, most of 

them focus primarily on the implementation phase.  

 

Regarding consistency in Smart Contracts, proposals such as that of Sun et al. (Yuqiang, Daoyuan, Yue, Han, Haijun, Zhengzi, 

Xiaofei, & Yang, 2024) present a methodology for detecting inconsistencies between what a Decentralized Application (DApp) 

(Zheng, Jiang, Wu, & Zheng, 2023) promises in its interface (front-end) and what is implemented in its Smart Contract (back-

end). In their work, consistency refers to the alignment between what a DApp claims it will do (e.g., paying 3% daily) and what 

its code executes. The system aims to identify “inconsistencies” in financial, functional, and availability aspects. Their 

methodology first extracts attributes from the description using linguistic analysis techniques and controlled grammar prompt 

design; then, the bytecode is decompiled and semantically analyzed to verify whether the attributes of the contract align with 

those in the textual description. Subsequently, a comparison between both representations is conducted to detect inconsistencies. 

Their model employs dataflow-guided symbolic execution (King, 1976), a form of formal verification, to simulate different 

execution paths of the contract. 

 

Finally, there are recent proposals such as that of Guo (2025), which performs formal verification using Transition Systems and 

Computation Tree Logic on critical properties of Solidity-implemented code executed in dynamic IoT environments. The aim of 

this approach is to mitigate security risks and strengthen Smart Contract implementations (Guo, 2025).  

 

In contrast to these approaches, the present proposal focuses on analyzing inconsistencies in the design rules of Smart Contracts, 

that is, verification is applied at the design-rule level. The objective is to ensure greater confidence in a design free of 
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contradictions, thereby leading to a more robust implementation. An additional contribution to this proposal is the projection of 

implementation through the generation of both code and Finite State Machines; each derived from the verified Smart Contract 

rules. To summarize this section, the Table 1 highlights the contributions of the reviewed proposals, drawing comparisons with 

the contributions of our own approach. 

 

Table 1. Contributions comparison. 

Related Work Contribution Our approach 

Nam, & Kil, 2022. User interaction through 

Smart Contracts with 

MCMAS. 

We consider user 

interaction over the 

rules of Smart 

Contracts. 

Amani, Bégel, 

Bortin, & Staples, 

2018. 

Verification in EVM 

Bytecode with Theorem 

Prover. 

We will verify the 

Smart Contract 

rules before 

implementation. 

Nikolić, Kolluri, 

Sergey, Saxena, & 

Hobor, 2018. 

Identify vulnerabilities in 

contracts invocations. 

We consider a 

Vulnerability 

Knowledge Base to 

support verification 

in Smart Contract 

rules. 

Jiang, Liu, & 

Chan, 2018. 

Identify vulnerabilities with 

fuzzy logics. 

We identify 

inconsistencies that 

can lead to 

vulnerabilities. 

Bai, Cheng, Duan, 

& Hu, 2018. 

Models Smart Contracts as 

Finite State Machine and a 

template to develop them. 

We model Smart 

Contract Rules as a 

OWL Expressions 

to perform formal 

verification. 

Yuqiang, 

Daoyuan, Yue, 

Han, Haijun, 

Zhengzi, Xiaofei, 

& Yang, 2024. 

Inconsistencies detection 

between backend and front 

end on DApps. 

We detect 

inconsistencies in 

the Smart Contract 

rules. 

Guo, 2025. Formal Verification on 

Solidity code to identify 

implementation risks on IoT 

enviroment. 

We perform formal 

verification at 

design stage, 

before 

implementation to 

ensure code 

writing. 

 

 

In addition, logical data inconsistencies have also been studied in the description logic (DLs) setting comprising a family of 

knowledge representation languages (Pérez-Gaspar, Gomez, Bárcenas, & Garcia, 2024). The balance between computational 

complexity and the expressiveness of DLs has allowed efficient reasoning tools to be constructed. These tools have enabled the 

application of DLs in several domains successfully. The following section presents the theoretical foundation of the consistency 

definition, which constitutes one of the main contributions of this proposal. 

 

3 OWL Expression Description Logic 
 

Description Logics (DL) constitute a family of logical formalisms designed to represent the structured knowledge of a domain 

through concepts, roles, and individuals, thereby enabling the precise specification of the relationships and constraints that exist 
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among them (Baader et al., 2007). DL lies at the intersection of artificial intelligence, mathematical logic, and information 

systems, and they provide the formal foundation for ontology languages such as OWL. 

 

Description languages are distinguished by the constructions they provide; concept descriptions are formed according to the 

following syntax rule: 

C, D → A | ⊤ | ⊥ | ¬A | C ⨅ D | C ⨆ D | ∀R.C | ∃R.C  

Negation can only be applied to atomic concepts, and only the top concept is allowed in the scope of an existential 

quantification over a role R.  

 

To define formal semantics, it is necessary to consider interpretations I that consist of a non-empty set ΔI (the domain of the 

interpretation) and an interpretation function I = (ΔI, . I ), which assigns to every atomic concept A a set AI ⊆ ΔI and to every 

atomic role R a binary relation RI ⊆ ΔI × ΔI. The interpretation function is extended to concept descriptions by the following 

inductive definitions: 

⊤I = ΔI  

⊥I = ∅  

(¬A )I = ΔI ∖ AI  

(C ⨅ D )I = C I ∩ D I   

(C ⨆ D )I = C I ∪ D I   

(∀R.C )I = {a ∈ ΔI | ∀b. (a, b) ∈ R I → b ∈ C I }  

(∃R.C )I = { a ∈ ΔI | ∃b. (a, b) ∈ R I }.  

It is said that two concepts C, D are equivalent, and write C ≡ D, if C I = D I for all interpretations I. The union of concepts is 

written as C ⨆ D, and interpreted as (C ⨆ D )I = C I ∪ D I. Full existential quantification is written as ∃R.C, and interpreted as 

(∃R.C )I = { a ∈ ΔI | ∃b. (a, b) ∈ R I ⋀ b ∈ C I } ∃R.C differs from ∃R.C in that arbitrary concepts are allowed to occur in the 

scope of the existential quantifier. The negation of arbitrary concepts is written as ¬ C, and interpreted as (¬C ) I = ΔI ∖ C I. 

 

The semantics of concepts identifies description languages as fragments of first-order predicate logic. Since an interpretation I 

respectively assigns to every atomic concept and role a unary and binary relation over ΔI, it is possible to view atomic concepts 

and roles as unary and binary predicates. The constructor’s intersection, union, and negation are translated into logical 

conjunction, disjunction, and negation, respectively. Then it is possible to form complex descriptions of concepts to describe 

classes of objects. 

 

Now, terminological axioms make statements about how concepts or roles are related to each other. Then, single out definitions 

as specific axioms and identify terminologies as sets of definitions by which it can introduce atomic concepts as abbreviations or 

names for complex concepts. In most general cases, terminological axioms have the form C ⊑ D (R ⊑ S) or C ≡ D (R ≡ S) where 

C, D are concepts (and R, S are roles). Axioms of the first kind are called inclusions, while axioms of the second kind are called 

equalities. The semantics of axioms is defined as an interpretation I satisfies an inclusion C ⊑ D if C I ⊆ D I, and it satisfies an 

equality C ≡ D if C I = D I. If T is a set of axioms, then I satisfies T  if and only if I satisfies each element of T . If I satisfy an 

axiom, then it is a model of this axiom. Two axioms or two sets of axioms are equivalent if they have the same models. 

 

A finite set of definitions T  is called terminology or TBox if no symbolic name is defined more than once, that is, if for every 

atomic concept A there is at most one axiom in T  whose left-hand side is A.  

Table 2. TBox syntax and semantics. 

Concept Syntax Semantic 

Concept inclusion C ⊑ D C I ⊆ D I 
Concept definition C ≡ D C I = D I 
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T can be seen as a mapping that associates to a name symbol A the concept description T (A) = C . With this notation, an 

interpretation I is a model of T  if, and only if, AI = (T (A))I. 

In addition to the TBox, is the world description or ABox, in the ABox, one describes a specific situation of an application 

domain in terms of concepts and roles. Some of the concepts and role atoms in the ABox may be defined names of the TBox. In 

the ABox, one introduces individuals, by giving them names, and one asserts properties of these individuals. Individual names 

are denoted by a, b, c. Using concepts C and roles R, one can make assertions of the following two kinds in an ABox: C(a), R(b, 

c). By the first kind, called concept assertions, one states that a belongs to (the interpretation of) C. By the second kind, called 

role assertions, one states that c is a filler of the role R for b. 

 

A semantics to ABoxes are given by extending interpretations to individual names, from now on, an interpretation I = (ΔI, . I ) 

not only maps atomic concepts and roles to sets and relations, but in addition maps each individual name a to an element aI ∈ ΔI. 

Distinct individual names denote distinct objects can be assumed. Therefore, this mapping must respect the unique name 

assumption, that is, if a, b are distinct names, then aI ≠ bI. The interpretation I satisfies the concept assertion C(a) if aI ∈ C I, and 

it satisfies the role assertion R(a, b) if (aI, bI ) ∈ R I. 

Table 3. ABox syntax and semantics. 

Concept Syntax Semantic 

Concept assertion C(a) a I ∈ C I 
Role assertion R(a, b) (aI, bI ) ∈ R I 

 

An interpretation satisfies the ABox A if it satisfies each assertion in A. In this case I is a model of the assertion of the ABox. 

 

Definition 1. (Knowledge Base). A knowledge base is composed of a finite set of terminology axioms, called a TBox T, and a 

finite set of assertion axioms, called an ABox A. Then, I satisfy an assertion of an ABox A with respect to a TBox T if in 

addition to being a model of A, ir is a model of T. Thus, a model of A and T is an abstraction of a concrete world where the 

concepts are interpreted as subsets of the domain as required by the TBox and where the membership of the individuals to 

concepts and their relationships with one another in terms of roles respect the assertions in the ABox. 

 

Definition 2. (Consistency). An ABox A is consistent with respect to a TBox T if there is a common model for both A and T. 

 

In addition to the foregoing, OWL enables the formal description of concepts, properties, and relationships within a specific 

domain, thereby endowing applications with the ability to share and interpret knowledge in a precise and automated manner 

(Baader et al., 2007). It is built upon the foundations of RDF (Resource Description Framework) and RDFS (RDF Schema), 

extending their capabilities with greater logical expressivity using Description Logics (Baader et al., 2007). Consequently, OWL 

supports features such as cardinality restrictions, equivalences, disjunctions, transitive, symmetric, and inverse properties, as 

well as the definition of classes by means of complex combinations of other classes and properties (Baader et al., 2007). 

 

It is possible to define syntax and semantics in terms of a descriptive language; with OWL, one can construct descriptions of 

classes, data types, individuals, data values, properties, and axioms. 

 

Based on the above, Table 4 presents in the left column the abstract syntax in OWL, while the central column displays the 

equivalent expression in Description Logic syntax, and the right column shows the corresponding expression in Description 

Logic semantics. 

Table 4. OWL DL descriptions, data ranges, properties, individuals, and data values. 

OWL Syntax DL Syntax DL Semantic 

A A A I ⊆ ΔI 
owl:Thing ⊤ ΔI 
owl:Nothing ⊥ ∅ 
intersectionOf(C1…Cn) C1 ⨅ … ⨅ Cn C1I ∩ … ∩ CnI 

unionOf(C1…Cn) C1 ⨆ … ⨆ Cn C1I ∪ … ∪ CnI 

complementOf(C ) ¬C ΔI ∖ C I 
D D D I ⊆ ΔI 

R R R I ⊆ ΔI × ΔI 
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inv(R ) R - {(x, y) | (y, x) ∈ R I } 

U U U I ⊆ ΔI × ΔI 
o o o I 

v v v I 

restriction(R someValuesFrom (C )) ∃R.C {x | ∃y.(x, y) ∈ R I  ⋀ y ∈ C I } 

restriction(R  allValuesFrom (C )) ∀R.C {x | ∀y.(x, y) ∈ R I  ⇒ y ∈ C I } 

restriction(R  hasValue(o )) R : o o I ∈ R I 
restriction(U someValuesFrom (D )) ∃U.D {x | ∃y.(x, y) ∈ U I  ⋀ y ∈ D I } 

restriction(U  allValuesFrom (D )) ∀U.D {x | ∀y.(x, y) ∈ U I  ⇒ y ∈ D I } 

restriction(U  hasValue(v )) U : v v I ∈ U I 
oneOf(o1 … on ) {o1 } ⨆ … ⨆ {on } o1I ∪ … ∪ onI 

oneOf(v1 … vn ) {v1 } ⨆ … ⨆ {vn } v1I ∪ … ∪ vnI 

 

OWL employs descriptive constructions within axioms that provide information about classes, properties, and individuals, as 

illustrated in Table 5. Similarly, the left column presents the abstract syntax in OWL, the central column displays the equivalent 

expression in Description Logic syntax, and the right column provides the corresponding expression in Description Logic 

semantics. 

Table 5. OWL DL axioms and facts. 

OWL Syntax DL Syntax DL Semantic 

Class(A partial C1 … Cn ) A ⊑ C1 ⨅ … ⨅ Cn A I ⊆ C1I ∩ … ∩ CnI 

Class(A complete C1 … Cn ) A ≡ C1 ⨅ … ⨅ Cn A I ≡ C1I ∩ … ∩ CnI 

EnumeratedClass(A o1 … on) A ≡ {o1 } ⨆ … ⨆ {on } A ≡ o1I ∪ … ∪ onI 

SubClassOf(C1   Cn) C1 ⊑ C2 C1 I ⊆ C2 I 
EquivalentClasses(C1 … Cn) C1 ≡ … ≡ Cn C1I ≡ … ≡ CnI 

DisjointClasses(C1 … Cn ) Ci ⨅ Cj ⊑ ⊥, i ≠ j Ci I ∩ Cj I ⊆ ∅, i ≠ j 
Datatype(D )   

ObjectProperty(R super(R1 )… super(Rn ) R ⊑ Ri  R I ⊆ Ri I 

domain(C1 ) … domain(Cm ) ≥ 1 R ⊑ Ci {a ∈ ΔI |{b ∈ ΔI |<a, 
b> ∈ R I ⋀ b ∈ CI } ≥ 
1} ⊆ Ci I 

range(C1 ) … range(Cl )) ⊤ ⊑ ∀R.Ci ΔI ⊆ {x | ∀y.(x, y) ∈ R I  
⇒ y ∈ Ci I } 

SubPropertyOf(R1   R2) R1 ⊑ R2 R1 I ⊆ R2 I 

EquivalentProperties(R1 … Rn) R1 ≡ … ≡ Rn R1I ≡ … ≡ RnI 

DatatypeProperty(U super(U1) … super(Un ) U ⊑ Ui  U I ⊆ Ui I 

domain(C1 ) … domain(Cm ) ≥ 1 U ⊑ Ci {a ∈ ΔI |{b ∈ ΔI |<a, 
b> ∈ U I ⋀ b ∈ CI } ≥ 
1} ⊆ Ci I 

range(D1 ) … range(Dl )) ⊤ ⊑ ∀U.Di ΔI ⊆ {x | ∀y.(x, y) ∈ U I  
⇒ y ∈ Di I } 

SubPropertyOf(U1   U2) U1 ⊑ U2 U1 I ⊆ U2 I 
EquivalentProperties(U1 … Un) U1 ≡ … ≡ Un U1I ≡ … ≡ UnI 

AnnotationProperty(S )   

OntologyProperty(S )   

Individual(o type (C1 ) … type (Cn ) o ∈Ci o I ∈Ci I 

value(R1   o1) … value(Rn   on ) 〈o, oi 〉∈Ri 〈o I, oi I 〉∈Ri I 

value(U1   v1) … value(Un   vn ) 〈o, vi 〉∈Ui 〈o I, vi I 〉∈Ui I 
SameIndividual(o1 … on) {o1} ≡ … ≡ {on} o1I ≡ … ≡ onI 
DifferentIndividuals(o1 … on ) {oi } ⊑ ¬{oj}, i ≠ j oi I ⊆ ΔI ∖ oj I, i ≠ j 
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4 Smart Contracts Consistency Definition 
 

Blockchain technology emerges as a specialized application of Distributed Systems, leveraging principles such as 

decentralization, data replication, and distributed process coordination to achieve an immutable and shared ledger among 

multiple participants (Wood, 2014). 

 

According to the National Institute of Standards and Technology (NIST) (Yaga, Mell, Roby, & Scarfone, 2018), Blockchain can 

be defined as a Distributed Ledger Technology (DLT) (El Ioini & Pahl, 2018) that records cryptographically signed transactions 

grouped into blocks. Each block is cryptographically linked to the preceding one before its validation and submission to a 

consensus decision. As new blocks are added, the previous blocks become increasingly difficult to modify. Newly created 

blocks are replicated across all copies of the network’s ledger, and any conflicts are automatically resolved using predefined 

rules (Yaga et al., 2018). 

 

Smart Contracts represent a key extension of Blockchain technology, as they enable the automatic execution of agreements 

between parties without the need for intermediaries. Smart Contracts were first defined in 1994 by Nick Szabo (Szabo, 1996) as 

computerized transaction protocols designed to automatically enforce the terms of a contract. Their primary objective is to 

minimize intermediaries to reduce discrepancies or disputes among the parties involved in the agreement (Szabo, 1996). 

 

A Smart Contract is essentially a program stored on a Blockchain that executes deterministically once predefined conditions are 

met, with its outcome recorded immutably on the Blockchain. Thus, a Smart Contract is composed of functions, variables, and 

defined values, elements inherent to software. As software, its development can be carried out following the principles of the 

software life cycle (Sommerville, 2015). 

 

The software life cycle describes the fundamental stages in the development process of a system, from the conception of the 

idea to its retirement from service, encompassing phases such as requirements analysis, design, implementation, testing, 

deployment, and maintenance (Pressman & Maxim, 2014). This model provides a structured framework for managing software 

projects, enabling the planning, monitoring, and evaluation of progress, while also ensuring that the final product meets 

expectations of quality, functionality, and sustainability (Sommerville, 2015). 

 

In the case of Smart Contracts, the software life cycle acquires relevance due to the immutable nature of transactions and 

contracts deployed on a Blockchain. Once a Smart Contract is implemented and recorded on the Blockchain, its rules become 

fixed, and direct modification of the code is impossible without deploying a new contract and migrating both data and users to it 

(Antonopoulos & Wood, 2018). This imposes the need for a rigorous approach in the early stages of the life cycle, particularly 

during requirements analysis, design, and the formal verification of code (Rouhani & Deters, 2019). 

 

During the requirements analysis and design phases, it is crucial to precisely identify the conditions, constraints, and 

expectations of the parties involved, as any ambiguity may translate into irreversible errors in the contract’s logic (Christidis & 

Devetsikiotis, 2016). In the design phase, it is recommended to employ formal modeling techniques and graphical 

representations such as flowcharts, finite state machines, and specifications in formal languages to anticipate potential execution 

scenarios and detect inconsistencies prior to implementation (Garcia-Alfaro, Navarro-Arribas, & Herrera-Joancomartí, 2022). 

 

The foregoing motivates the placement of the design phase within the stages of the Smart Contract life cycle. To this end, Figure 

2 illustrates the life cycle of a Smart Contract. The phases in this cycle range from its design, through deployment and 

execution, to its eventual termination. 

 

Development Phase 

 

Design. This is the initial stage within the life cycle, where the business logic that the contract will automate is defined. In other 

words, a detailed analysis of the requirements and use cases is carried out. Based on this logic, the necessary functions and 

variables are specified, along with the way data will be stored and the entities that will interact with the contract. Finally, the 

adjustment of the business logic to the Blockchain network on which the contract will be implemented and deployed is projected 

(Sillaber & Waltl, 2017). 

Implementation. The contract is implemented using a language specific to Smart Contracts, such as Solidity (for Ethereum), or 

other languages depending on the Blockchain platform employed. This phase highlights the adaptability and flexibility of Smart 

Contract development, keeping Blockchain practitioners actively engaged. Development environments such as Hardhat (Wood, 

2014) or Truffle (Wood, 2014) are also used to verify the contract’s functionality (Sillaber & Waltl, 2017). 
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Fig. 2. Smart Contract Life Cycle. 

 

In the design subphase, verification is intended to be performed. In this context, formal verification is a method used in 

computing and engineering to rigorously demonstrate or verify the correctness of hardware and software systems. It employs 

mathematical techniques to prove that a system satisfies the specified requirements or properties (Baader et al., 2007). 

 

In the previous section, the theoretical framework that motivates the formalization of rules for Smart Contract design was 

presented. The first step is to express the rules of the contracts in OWL. To this end, as shown in Tables 4 and 5, some 

correspondence exists between OWL and the syntax and semantics of Description Logics. 

 

Example. At the beginning of the document, a simple example of contradictory rules within a Smart Contract was presented: 

Rule 1 If there are sufficient funds in the account, any user may withdraw. Rule 2 User Alice is not permitted to withdraw under 

any circumstances. Its representation in OWL is: 

 
Class(ex:User partial owl:Thing) 

Class(ex:Account partial owl:Thing) 

Class(ex:AccountWithFunds partial ex:Account) 

 

ObjectProperty(ex:CanWithdrawal domain(ex:User) range(ex:Account)) 

 
Individual(ex:X type(ex:User) type(ex:CannotWithdraw)) 

Individual(ex:C1 type(ex:AccountWithFunds)) 

 

Based on the expression correspondences presented in Tables 4 and 5, it is possible to express a Smart Contract Design Rules 

like a subset of a Knowledge Base, then the terminology of the TBox and the assertions of the ABox are presented below. 

 

Classes: User, Account, AccountWithFunds ⊑ Account, CannotWithdrawal ≡ ∄CanWithdrawal.Account 
Roles: CanWithdrawal (User, Account) 

Rule: User (u ) ⋀ AccountWithFunds (c ) → CanWithdrawal (u, c ) 

Assertions: User (X ), CannotWithdrawal (X ), AccountWithFunds (C1 ) 

 

Let us suppose that ΔI = (x, c1 ) where User or X I is x, AccountWithFunds or C1I is c1 , the rule establishes that for every user 

and every account with funds, it must satisfy (x, c1 ) ∈ CanWithdrawal I. However, one of the assertions in the ABox 
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establishes that CannotWithdrawal (X ), this means that x ∉ CanWithdrawal I then it is a contradiction in the terminology 

inside the design rules of the Smart Contract. This contradiction shows that there is an interpretation I or model that does not 

satisfy the Knowledge Base (KB), therefore the KB is inconsistent. 

 

5 Verifiable Smart Contract OWL Models 
 

In Section 3, the theoretical foundation for OWL expressions in terms of Description Logics was presented, while Section 4 

defined consistency in Smart Contracts. Building on these definitions, this section models rules present in real-world Smart 

Contracts, with the aim of illustrating the potential of verification in this type of model. 

 

Model 1. (Supply Chain). Rule 1 The Smart Contract must register the acceptance criteria (correct location, delivery lead time 

for each shipment leg) defined by the OEM, as initial validation parameters. Rule 2 The Smart Contract must store the 

publication of the delivery details by Supplier A, as proof of compliance. Rule 3 The Smart Contract must verify consistency 

between the data published by Supplier A and the receipt confirmed by Supplier B. Rule 4 The Smart Contract executes the 

payment automatically to the respective supplier. Rule 5 The Smart Contract detects that certain conditions are not met (e.g., 

delivery delay, incorrect location). The formalization in OWL is presented below: 

 
Ontology(SupplyChain 

Class(ex:Actor partial owl:Thing) 

Class(ex:OEM partial ex:Actor) 

Class(ex:Supplier partial ex:Actor) 

Class(ex:SupplierA complete ex:Supplier) 

Class(ex:SupplierB complete ex:Supplier) 

 

Class(ex:Shipment partial owl:Thing) 

Class(ex:Leg partial owl:Thing) 

Class(ex:Criteria partial owl:Thing) 

Class(ex:DeliveryRecord partial owl:Thing) 

Class(ex:ReceiptRecord partial owl:Thing) 

Class(ex:SensorData partial owl:Thing) 

Class(ex:ReliableData partial ex:SensorData) 

Class(ex:UnreliableData partial ex:SensorData) 

 

Class(ex:Payment partial owl:Thing) 

Class(ex:Alert partial owl:Thing) 

Class(ex:Obligation partial owl:Thing) 

Class(ex:Right partial owl:Thing) 

Class(ex:LatePaymentCharge partial owl:Thing) 

Class(ex:ConditionEvaluation partial owl:Thing) 

Class(ex:MetCriteria complete ex:ConditionEvaluation) 

Class(ex:UnmetCriteria complete ex:ConditionEvaluation) 

… 

 

The rules of this contract do not precisely specify the rights and obligations of the participants; an example would be the case of 

a payment delay by the OEM with respect to the suppliers. This may lead to potential inconsistencies. 

 

Model 2. (Parity Wallet). Rule 1 If a user executes the initial function, they are granted ownership of the contract. Rule 2 After 

deployment, the contract shall not be destructible by any user or function. Rule 3 Any user who holds ownership rights is 

authorized to invoke the initialization procedure. Rule 4 The execution of the initialization procedure can result in enabling the 

contract’s self-destruct capability. Rule 5 Any execution path that enables ownership claiming followed by self-destruction is 

possible.  

 

This Smart Contract contains a design flaw that allows any user to repeatedly execute the constructor to claim ownership. As a 

result, the new owner can invoke the destroyFunction. The formalization in OWL is presented below: 

 
Ontology(ParityWallet 
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Class(Contract partial owl:Thing) 

Class(MutiSigWallet partial Contract) 

Class(Ownership partial owl:Thing) 

Class(Initialization partial owl:Thing) 

Class(Destruction partial owl:Thing) 

Class(Contradiction partial owl:Thing) 

     

ObjectProperty(allows domain(Contract) range(Ownership)) 

ObjectProperty(prohibits domain(Contract) range(Destruction)) 

ObjectProperty(canCall domain(Ownership) range(Initialization)) 

ObjectProperty(leadsTo domain(Initialization) range(Destruction)) 

ObjectProperty(creates domain(Initialization) range(Contradiction)) 

     

Individual(parityWallet type(MultiSigWallet)) 

Individual(initialOwnership type(Initialization)) 

Individual(destroyFunction type(Destruction)) 

Individual(ownershipReclaim type(Ownership)) 

Individual(parityContradiction type(Contradiction)) 

     

Individual(parityWallet value(allows ownershipReclaim) value(prohibits 

destroyFunction)) 

Individual(ownershipReclaim value(canCall initialOwnership)) 

Individual(initialOwnership value(leadsTo destroyFunction) value(creates 

parityContradiction)) 

) 

 

The ParityWalletOntology models the contradictory requirements of the Parity Wallet Smart Contract by defining the main 

classes Contract (line 2), MultiSigWallet (line 3), Ownership (line 4), Initialization (line 5), Destruction (line 6), and 

Contradiction (line 7). The class MultiSigWallet is a subclass of Contract, capturing the specific nature of multi-signature 

wallets. 

 

The ontology specifies object properties such as allows, prohibits, canCall, leadsTo, and creates, which establish relationships 

among the contract components, indicating the actions permitted within it. Thus, prohibits defines explicitly forbidden actions, 

canCall expresses the invocation relationship between actions, leadsTo models’ causal dependencies among actions, and creates 

denotes the emergence of inconsistencies. 

 

The ontology instantiates key individuals such as parityWallet (representing the Parity Wallet contract instance), 

ownershipReclaim (the action of reclaiming ownership), initialOwnership (the reinitialization of the contract), destroyFunction 

(the self-destruction operation), and parityContradiction (the resulting inconsistency in line 19). The axioms assert that 

parityWallet allows ownershipReclaim and prohibits destroyFunction, while ownershipReclaim can invoke initialOwnership, 

which in turn leads to destroyFunction and creates parityContradiction. 

 

6 Conclusions 
 

This work presents a novel approach to the analysis of consistency in Smart Contracts by proposing an innovative verification 

system for Smart Contract designs. This system not only considers the verification of design rules but also offers the capability 

to generate code and finite state machines as additional support for designers and developers. Through the formal modeling of 

contract behavior in OWL and the application of both theoretical and real-world examples, this study demonstrates how 

consistency issues can be identified at the design stage, prior to implementation, thereby enhancing the reliability and security of 

Smart Contract execution. 

 

In comparison with related works, which focus primarily on verifying Smart Contracts at the code level or analyzing 

inconsistencies between front-end promises and back-end implementations, the contribution of this study lies in shifting the 

focus to the grammatical structure of Smart Contracts before coding, employing concurrency primitives and a language-

independent grammar. 
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The formal definition of consistency proposed in this work provides a fundamental criterion for validating Smart Contract rules. 

This definition is essential for enabling the early detection of design flaws that may lead to security vulnerabilities such as 

reentrancy. In this way, the contribution extends beyond theoretical discourse, offering practical value to developers and 

auditors seeking to improve the correctness and robustness of contracts at their foundation. 

 

Before concluding, it is important to acknowledge the future perspective of this proposal. The most significant one is that it only 

considers contracts belonging to a single Blockchain network, thereby excluding the possibility of verifying features such as 

interoperability. With respect to theoretical constraints, the exploration of different types of contracts within a single Blockchain 

network is still ongoing; consequently, the expressive capabilities offered by the verification system will be determined by 

Description Logics. Further experimentation will help establish various metrics, both theoretical and related to code generation 

quality, and the implementation of the verification tool following the proposed architecture (see Figure 1). 

 

Future work for this project envisions the use of OWL DL-based verification tools to validate models of design rules in Smart 

Contracts. The objective is to develop a verification system capable of processing Smart Contract design rules to detect 

inconsistencies, such as those defined in this study, without requiring specialized technical knowledge. 
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