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Abstract. This study introduces a predictive air quality monitoring 

system based on Random Forest machine learning models and low-

cost embedded sensors. The system was designed and implemented 

in Guadalupe, Nuevo León, Mexico, to monitor carbon monoxide 

(CO), car-bon dioxide (CO2), and particulate matter (PM). Real-

time data was collected using a Particle Photon 2 microcontroller 

with four different sensors. The data was processed using Python 

scripts, and the Random Forest model was trained to predict future 

pollutant values. Results demonstrated strong model performance, 

validated through statistical evaluation metrics and graphical 

comparisons. The proposed system shows promise for deployment 

in smart urban environments. 
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1 Introduction 
 

It is important to consider the current and future air quality of the place where one intends to settle. This helps in making cautious 
decisions regarding outdoor activities, especially those of considerable duration. Moreover, air quality affects not only people but 

also the surrounding environment, which in turn impacts us either positively or negatively.  

 

The development and implementation of smart systems for air quality monitoring have been evolving rapidly. Various studies 

confirm the potential of combining low-cost sensors with machine learning (ML) techniques to provide effective, real-time air 

quality assessments (Siva Kumari et al., 2024).  

 

Air pollution remains one of the major environmental challenges in urban areas. According to the World Health Organization 

(WHO), poor air quality causes millions of premature deaths each year (WHO, 2023). Developing accessible and accurate 

monitoring systems is critical for detecting and managing pollutant levels in real time. This study aims to propose a solution using 

embedded hardware and AI models to address this issue.  

 
Recent studies have demonstrated the effectiveness of machine learning models such as Random Forest, Support Vector Machines, 

and Deep Learning algorithms in forecasting air pollution levels with high accuracy and adaptability to varying environmental 

conditions (Kalaivani, et al., 2021; Samiul Islam, 2025). For example, predictive models based on seasonal trends and 

meteorological parameters have been successfully implemented in cities like Sakarya, Türkiye, to forecast concentrations of major 

pollutants such as PM₂.₅, PM₁₀, and NO₂ (Eren, et al., 2025). 
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Furthermore, low-cost air quality monitoring systems have demonstrated significant potential in urban contexts. These systems 

can be developed using multisensor platforms such as the ZPHS01B, as validated in comparative studies evaluating their 

performance and data reliability (Meneses-Albala et al., 2025). In Bucharest, similar techniques have been applied to anticipate 

pollutant spikes, enabling early warnings and supporting public health interventions (Cican, et al, 2023). 

 

In the state of Nuevo León, Mexico, air pollution poses a serious problem, particularly in the metropolitan area of Monterrey and 

its surrounding municipalities. This situation is a major concern, as it affects both public health and the environment. Just a few 

hours spent outdoors are enough to result in exposure to significant levels of pollution that permeate the open spaces of the affected 
regions. 

 

As a state significantly affected by air pollution, we currently lack the capacity to accurately predict the daily production of 

airborne chemical pollutants. Within this context, the present project focuses on developing an advanced system supported by 

machine learning algorithms to predict and detect anomalies in the concentration of atmospheric chemicals, both existing and 

emerging. The system is based on data collected by an embedded platform that monitors various chemical compounds present in 

the air we breathe, including ozone, carbon monoxide, and carbon dioxide, among others, that impact both human health and the 

environment.  

 

This initiative aligns with emerging trends in smart city development, where real-time air quality monitoring is integrated into 

urban health and planning policies (Liu, H. et al., 2024). For example, the University of Ruse has implemented an autonomous 
monitoring system across its campus to study pollutant patterns and adapt its infrastructure accordingly (Kozłowski, et al., 2025). 

These strategies contribute not only to localized environmental management but also to a broader framework of clean air and 

energy sustainability, as promoted by global organizations such as the WHO (WHO 2023).  

 

The development of this air quality monitoring system aligns with existing patents that integrate sensor technologies with 

predictive models. Notably, patent ES2950188T3 describes a method and system for controlling the moisture content of fiber in 

the chipboard manufacturing process, using sensors and machine learning algorithms to optimize the drying process (Mera Pérez,  

et al., 2023). Although this patent focuses on moisture control in an industrial context, the underlying principles of integrating 

sensor data with predictive modeling are equally applicable to environmental monitoring systems. 

 

Therefore, this study proposes the implementation of an intelligent air quality monitoring prototype focused on critical pollutants 
such as carbon monoxide, carbon dioxide, and particulate matter (PM1.0, PM2.5, and PM10). The core contribution lies in 

integrating affordable environmental sensors with a Random Forest algorithm, deployed on a Particle Photon 2 microcontroller, 

to enable real-time prediction and anomaly detection in polluted urban environments. This research advances the development of 

accessible smart monitoring systems by adapting them to the pollution conditions of Nuevo León, Mexico, and exploring their 

scalability and applicability to other regions facing similar environmental challenges.  

 

The document is organized as follows: Section 2 presents the benchmarks in the literature and the theoretical background. Section 

3 presents the materials and methods used for the monitoring system used in this research. Section 4 describes the results obtained 

in different configurations and the comparison with different methods reported in the literature. Section 5 analyzes the impact of 

the model applied and evaluates the robustness of the models. Section 6. The discussion and finally, the conclusions and future 

work are presented in Section 7. 

 
In summary, this study predicts concentrations of key air pollutants, including carbon monoxide (CO), carbon dioxide (CO2) and 

particulate (PM1.0, PM2.5 and PM10), using a Random Forest-based machine learning model integrated with low-cost embedded 

sensors, with the practical objective of enabling real-time air quality forecasting and anomaly detection to support public health 

awareness and urban environmental decision-making. 

 

2 Benchmarks in Literature 
2.1 Air Quality and Health Risks 
 

Air pollution including carbon monoxide (CO) and particulate matter (PM) poses serious health risks and is closely linked to 

respiratory and cardiovascular diseases (WHO, 2023; Kampa & Castanas, 2008). Smart city initiatives have increasingly 

integrated real-time air quality monitoring systems to improve the management of public health concerns (Kalajdjieski, et al, 

2020). Low-cost sensors such as the MQ-7 (CO), MQ-135 (CO₂/VOCs), PMS5003 (PM₁.₀/PM₂.₅/PM₁₀), and BME680 

(temperature, pressure, humidity, VOCs) enable distributed air quality monitoring networks with acceptable accuracy for many 

environmental applications, despite their limitations compared to laboratory-grade instruments (Karagulian, et al., 2019; Kang, 
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Ye et al., 2022; Jayaratne, et al., 2020). These components have been successfully deployed in IoT-based systems for real-time 

environmental sensing (Kinnera, et al., 2019; Ghorpade, et al., 2021). 

 

2.2 Evaluation Metrics 
 
Machine learning models particularly Random Forest and Support Vector Machines have demonstrated strong capabilities in 

forecasting CO₂ and PM₂.₅ levels using sensor-derived features, achieving accuracy rates above 85% in various urban contexts 

(Babu & Thomas, 2023). These methods contribute to mitigating sensor noise and enhancing predictive reliability (Kang, et al., 

2022).  

 

Random Forest is an ensemble machine learning method that combines multiple decision trees to improve predictive accuracy 

and robustness by averaging the outputs of individual trees. This approach handles nonlinear and complex interactions effectively, 

making it well suited for environmental applications such as air pollutant prediction (Ponselvakumar, et al., 2024; Pradeep Kumar 

Dongre et al., 2025). 

 

Linear regression is a statistical modeling technique used to estimate the relationship between one or more independent variables 

and a continuous dependent variable. It assumes a linear correlation and is often employed as a baseline model due to its simplicity 
and interpretability. However, it may underperform when dealing with non-linear relationships or high dimensional data (Guntaka, 

et al., 2024). 

 

The coefficient of determination (R²) indicates the proportion of variance in the dependent variable that is predictable from the 

independent variables. An R² value close to 1 suggests that the model explains most of the variability, whereas values near 0 

indicate weak predictive performance. 

 

The Mean Squared Error (MSE) measures the average squared difference between predicted and actual values. It penalizes larger 

errors more heavily and is widely used to evaluate regression models. A lower MSE indicates better model accuracy. 

 

Additionally, the Mean Absolute Error (MAE) was used as an evaluation metric. MAE measures the average magnitude of the 
errors in a set of predictions, providing a straightforward interpretation of model performance without heavily penalizing large 

errors.  

 

2.3 Microcontrollers and IoT 
 

The Particle Photon 2 microcontroller (ARM Cortex‑M33) offers secure Wi‑Fi connectivity, OTA firmware updates, and built in 

integration with the Particle Cloud, making it a robust platform for scalable air quality sensor networks (Wen, P.-J., & Huang, C., 

2020; Particle., 2023). Existing applications include edge-based machine learning (Zhang, et al., 2021) and real-time pollution 

alert systems (Dayberry, 2023). 
 

2.4 Cloud & Edge Integration 
 

Photon 2, connected to the Particle Cloud, supports real-time telemetry, diagnostics, and automated updates via secure 

communications (Cortes, 2025). Studies emphasize the importance of cloud and edge infrastructure for reliable and scalable 

environmental monitoring (Particle, 2023; Xu, & Helal, 2016), while embedded machine learning further reduces latency and 

enhances privacy in local inference tasks (Dharshani & Annamalai, 2023; Mtetwa et al., 2019). 

 

2.5 Calibration Methods 
 

Full stack deployments combining sensor arrays, machine learning algorithms, and cloud connectivity are increasingly common, 

demonstrating the feasibility of integrated environmental monitoring platforms (Ansari, M. & Alam, M., 2024; Kumar, S., & 

Jasuja, A., 2017). Calibration remains critical Random Forest based sensor calibration methods have proven especially effective 

in improving data accuracy for multi-pollutant setups (Margaritis, D. et al., 2021). Additionally, hybrid models that combine 

sensor data with satellite-based observations have achieved high-resolution mapping of long-term pollution trends (Babu, S., 2023; 

Unik M. et al., 2023). 
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3 Material & Methods 
3.1. System Overview 
 

The proposed air quality monitoring system was developed using embedded hardware and machine learning algorithms to detect 

and predict the concentration of harmful air pollutants. The core components of the system include sensors for data acquisition, a 

microcontroller for real-time data processing, and a machine learning model for intelligent analysis and prediction. Fig. 1 provides 

a clearer overview of the system architecture for this project. 

 

3.2. Materials and Hardware 
 

The hardware is centered around the Particle Photon 2 microcontroller, selected for its flexibility and compatibility with IoT 

applications. The following environmental sensors were integrated into the system: MQ-7: Detects carbon monoxide (CO), MQ-

135: Detects carbon dioxide (CO₂) and volatile organic compounds (VOCs), PMS5003: Measures particulate matter (PM₁.₀, PM₂.₅, 

and PM₁₀) and BME680: Measures temperature, humidity, and atmospheric pressure, and detects VOCs, see Fig. 1. 

 
 

Fig. 1. Summary of the system overview. 

 

The sensors were connected using a standard breadboard and jumper wires, as shown in Fig. 2. This setup facilitates modularity 

and ease of testing across different environments. Particulate matter (PM), particularly PM₁.₀, PM₂.₅, and PM₁₀ is among the most 

critical air pollutants due to its direct impact on human health. Fine particles can penetrate deep into the lungs and enter the 

bloodstream, increasing the risk of respiratory and cardiovascular diseases (Eren, et al., 2025). 
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Fig. 2. Connection of the sensors to the Particle Photon 2. 

 

In this system, PM monitoring is carried out using the PMS5003 sensor, integrated with the Particle Photon 2 microcontroller. 

This configuration enables real-time detection of airborne particles with high resolution. Sensor data is collected alongside other 

environmental parameters, such as temperature, humidity, and atmospheric pressure allowing for a more comprehensive analysis 

of air quality. The inclusion of PM sensing in the system is essential for developing predictive models and supporting data driven 

decisions in public health and environmental monitoring. 

 

3.3. Software Tools 
 

The system's firmware was developed in C++, using the Particle ecosystem for real-time data transmission and sensor 

management. For data processing and Random Forest model implementation, Python 3.10.x was used, along with the following 

libraries: Pandas and NumPy were employed for data manipulation and preparation, ensuring structured and clean input for the 

models. Scikit-learn was used to build and train machine learning models, particularly the Random Forest and Isolation Forest 

algorithms. To visualize the results and prediction behavior, Matplotlib was utilized. Finally, Joblib was used to serialize and save 

the trained models for future use and deployment. Sensor data was ex-ported in .txt format and converted to .csv files using Python 

scripts for further analysis. 

 

3.4. Methodology 
 

The project methodology was structured in two main phases: 

Phase 1, Data Acquisition: Data was collected using sensors deployed in an outdoor setting in Nuevo León, Mexico. The dataset 

included concentrations of CO, CO₂, particulate matter (PM₁.₀, PM₂.₅, PM₁₀), temperature, humidity, and atmospheric pressure. 

Data was sampled at regular intervals to ensure consistency in temporal resolution, as shown in Table 1. 

 

Phase 2, Data Preprocessing and Model Training: The collected data was processed using the Isolation Forest algorithm to detect 

and remove outliers. The cleaned dataset was subsequently used to train a Random Forest regression model capable of predicting 

pollutant levels for future days. The model’s performance was evaluated using R² and MSE as key performance metrics. The 

system is designed to provide near real-time, accurate, and interpretable predictions to support informed decision-making in public 
health and environmental monitoring. 
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Table 1. Sample data collected from the sensors. 

Date/time CO CO2 Temp Hum Pres PM1.0 PM2.5 PM10 

05/23/25 15:23 195.4 59.86 31.88 61.33 962.89 38 43 1299 

05/23/25 15:28 209.61 58.05 31.9 61.28 962.83 38 43 1299 

05/23/25 15:33 221.62 57.48 31.92 61.47 962.73 38 43 1299 

05/23/25 15:38 208.14 59.6 31.89 62.07 962.67 38 43 1299 

05/23/25 15:43 230.26 57.1 31.9 61.94 962.58 38 43 1299 

05/24/25 14:24 357.03 58.45 31.34 60.77 962.07 37 45 1273 

05/24/25 14:29 371.43 56.84 31.28 61.96 962.05 38 43 1189 

05/24/25 14:34 279.5 59.26 31.28 61.7 962.01 37 44 1182 

05/24/25 14:39 414.79 59.26 31.3 61.08 961.97 39 43 1106 

05/24/25 14:44 442.19 59.6 31.31 61.2 961.95 36 39 1047 

05/25/25 16:35 828.38 51.65 32.23 58.3 960.03 96 105 2381 

05/25/25 16:40 392.74 53.33 32.26 57.38 959.97 93 100 2361 

05/25/25 16:45 381.76 50.02 32.29 56.85 959.87 95 104 2382 

05/25/25 16:50 353.99 52.64 32.31 56.47 959.81 97 105 2374 

05/25/25 16:55 358.57 50.28 32.36 55.94 959.75 93 102 2372 

 

3.5. AI Implementation and Modular Script Structure 
 

After converting the sensor data from .txt to .csv format, a modular AI pipeline was developed in Python to streamline data 

cleaning, trained regression model, and prediction tasks. As shown in Fig. 3, the system architecture was organized into three 

independent Python scripts. This modular design enhances clarity, maintainability, and execution efficiency, allowing each 

component to be developed, tested, and updated independently. 

 
Script 1, Data Cleaning and Model training: This script reads the .csv files and filters out inconsistent or anomalous values using 

the Isolation Forest algorithm, ensuring the integrity of the training dataset. Subsequently, five independent Random Forest 

regression models are trained one for each pollutant (CO, CO₂, PM1.0, PM2.5, and PM10). 

 

Script 2, Past and Present Predictions: Utilizing the models trained in Script 1, this component generates predictions based on 

historical and current data. Its objective is to validate model accuracy by comparing predicted values with known measurements, 

providing visual feedback through plotted graphs. 

 

Script 3, Future Forecasting: This script is dedicated to predicting future pollutant levels based on recent data trends. It assesses 

the generalization capability of the trained models and evaluates their potential for proactive environmental monitoring. This 

modular structure promotes a clear separation of concerns, facilitates easier de-bugging and model updates, and enhances 
scalability for future versions of the system. 
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Fig. 3. Process of the Random Forest models implementation. 

 

4 Results 
 

As shown in Table 2, the training results of the models include the R² and the MSE. The R² value indicates how well the model 

fits the data by measuring the proportion of variance in the pollutant levels that can be explained by the input variables. A higher 

R² suggests a better fit and stronger learning of the pollutant patterns. On the other hand, MSE quantifies the average squared 

difference between the predicted and actual values, serving as an indicator of the model's predictive accuracy. Lower MSE values 

imply more accurate estimates or forecasts in relation to the true values observed. 

 
Table 2. Results of the 5 trained models presenting the R2 and the MSE metrics. 

Pollutant contaminant R2 MSE 

CO 0.444 11199.779 

CO2 0.889 1.907 

PM 1 0.999 0.797 

PM 2.5 0.997 2.471 

PM 10 0.908 163497.307 

 

From the data visualization, it is observed that the pollutants in the first and last data sets exhibit irregular values. This behavior 

is attributed to the use of low-cost sensors which, although optimally calibrated, lack the precision required to accurately detect 

actual pollutant concentrations. Nevertheless, this data is still utilized to evaluate the predictive capability of the artificial 

intelligence model. In contrast, the other pollutant variables display consistent and stable readings, which has enabled the models 

to effectively identify and learn their behavioral patterns. 

 

5 Analysis 
5.1. Present and Past Predictions 
 

The objective of these predictions is to demonstrate that the five model predictions are effectively learning and making accurate 

forecasts. A clear indication of this is when the predicted values closely match the actual measurements, reflecting the Random 

Forest algorithm's precision in estimating future concentrations of chemical pollutants in the air. Fig. 4 presents the pollutant levels 
predicted by the Random Forest´s model for the upcoming days. It is important to note that the Random Forest refers to the trained 

model itself, while the predictions of the “future prediction code” are outcomes generated by the model, not the Random Forest 

itself. 
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(a) Graph that compares actual values with the predicted CO 
in ppm. 

 
(b) Graph that compares actual values with the predicted 
CO2 in ppm. 

 
(c) Graph that compares actual values with the predicted 
PM1 in ppm. 

 
(d) Graph that compares actual values with the predicted 
PM2.5 in ppm. 

 
(e) Graph that compares actual values with the predicted 
PM10 in ppm. 

 

  

Fig. 4. Boxplot plots of each chemical pollutant in the air show whether the Random Forest model's predictions were as accurate 

as possible from the actual values. 

 

The boxplot shown in Fig. 4 provides a statistical summary of the pollutant data distribution. It includes the following components: 
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• The middle box is the standard values that appear and are detected by the sensors, below the line of the box is the 25% 

of the data that are below this value, which in other words are the amount that is rarely detected, while the top is 75% of 

the data below this value, which are more common values to appear. 

• The line that separates them is 50% of the data, it is the median, the central value. 

• The lines that join them are called whiskers, they are values that, although they are not so common to appear, even so, 

they are still within the range of data detected by the sensor and are not outliers. 

• The points that are far away are the outliers, erroneous values, values that are dis-carded because it does not make sense 

for those quantities to exist. 
 

So, if the predicted boxplot is the same as the real one, it means that the Random Forest models predicted the values accurately, 

but if they differ it means that there are errors in the prediction, de-pending on the size they differ is the amount of error in their 

prediction, if the difference is small, the errors are minimal, but if they are large, there are big mistakes. 

 

Fig. 4(a) presents a boxplot comparing the actual measured values and the predicted values of carbon monoxide (CO) 

concentrations in parts per million (ppm). The green box represents the distribution of actual sensor data, showing a wider spread 

and a greater number of outliers, indicating the presence of sudden peaks in CO levels. The orange box corresponds to the predicted 

data, showing a slightly narrower interquartile range, suggesting that the model provides more stable and conservative predictions. 

 

Fig. 4(b) illustrates the distribution of actual versus predicted values for carbon di-oxide (CO₂) measured in parts per million 
(ppm). Both distributions exhibit a similar median and interquartile range, indicating that the model achieves consistent and 

balanced predictions for CO₂. The absence of outliers suggests that the measurements and predictions are stable and less subject 

to extreme variations, reinforcing the sensors and models reliability for this parameter. 

 

Fig. 4(c) displays the comparison between real and predicted values for particulate matter with a diameter of 1.0 microns (PM1.0). 

Data was obtained using the PMS5003 sensor, with predictions made by the Random Forest model. The graph shows a nearly 

identical distribution between real and predicted values, with overlapping interquartile ranges and very close medians. This 

indicates a high accuracy of the model for PM1.0 detection and suggests that the environmental fluctuations are well captured in 

the training process. 

 

Fig. 4(d) compares the actual and predicted values for PM2.5, which includes fine particulate matter capable of penetrating deep 
into the lungs. The model predicts central values with accuracy, but the broader range in real data indicates greater environmental 

variability that the model does not fully replicate. 

 

Finally, Fig. 4(e) represents the distribution of real and predicted values of PM10, which refers to particulate matter with diameters 

up to 10 microns. The data indicates a wider spread and numerous outliers in the real measurements, likely due to sporadic high-

concentration events.  

In contrast, the predicted values show a tighter distribution, again pointing to the model’s tendency to smooth extreme values. 

Although the medians are aligned, this result suggests the model may benefit from anomaly detection mechanisms or additional 

environmental parameters. But because of the higher-noise of the low cost PMS5003 sensor, it shows these anomaly results. 

 

5.2 Linear Regression Plots 
 

Fig. 5 presents the linear regression graphs, which serve as a tool to evaluate the accuracy of the predictions. In these graphs, each 

dot represents a predicted data point; the X-axis shows the actual values, while the Y-axis represents the predicted values. The 

solid diagonal line indicates the ideal prediction, where predicted values perfectly match actual ones serving as a reference for 

perfect model performance.  
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(a) Graph showing the accuracy of the prediction 

from CO (Carbone Monoxide) in ppm. 

 
(b) Graph showing the accuracy of the prediction 

from CO2 (Carbone Dioxide) in ppm. 

 
(c) Graph showing the accuracy of the prediction 

from PM 1 in ppm. 

 
(d) Graph showing the accuracy of the prediction 

from PM 2.5 in ppm. 

 
(e) Graph showing the accuracy of the prediction 

from PM 10 in ppm 

 

Fig. 5. Linear regression graphs showing how accurate the Random Forest model's predictions were. 

 

 
Figure 5(a) compares real and predicted values of carbon monoxide (CO) concentrations using a linear regression model. The red 

regression deviates significantly from the ideal line (black dotted line), indicating moderate predictive performance. The R² score 

is 0.669, and the MAE is 15.813, reflecting considerable variability and suggesting that the model has difficulty accurately 

estimating CO levels, possibly due to sensor noise or outliers. 



Reynoso-Guajardo et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 324-340. 

334 

 

In the case of the Fig. 5(b) presents the prediction accuracy for CO₂ concentrations. The points align more closely along the ideal 

line compared to CO. The R² value of 0.951 and MAE of 0.777 show high predictive accuracy, with the model effectively capturing 

the relationship between real and predicted values for CO₂. 

 

Fig. 5(c) evaluates predictions for PM1.0 levels. The predicted values follow the ideal y = x line almost perfectly, showing 

exceptional model performance. The R² value is 0.999 and MAE is only 0.291, suggesting near-perfect predictions. This strong 

correlation may indicate high-quality sensor data, and a robust model fit for PM1.0. 

 
From Fig. 5(d), the linear regression line also closely matches the ideal line, reflecting excellent prediction quality for PM2.5. The 

R² value is 0.999, and MAE is 0.316, confirming minimal deviation between predicted and actual values. The model performs 

very well for this particulate matter size category. 

 

Finally, Fig. 5(e) examines the model’s predictions for PM10. The R² value drops to 0.912, and the MAE increases to 116.180, 

indicating more variance and a higher average error. While the alignment with the ideal line is still decent, the broader distribution 

suggests reduced accuracy compared to PM1.0 and PM2.5, potentially due to greater fluctuations in PM10 data, the PMS5003 

sensor limitations, bad calibration of the same sensor or a bad contamination from the environment that the sensor was to get 

calibrate. 

If all these predictions were 100% accurate, all the points would be well aligned to the cut line, because if the actual value coincided 

with the predicted one, the points would be part of that cut line, if I summed it all up in one equation it would be as follows: 

  (1) 

 

5.3 Time-Series Plot 
 

The graphics in Fig. 6 show us the accuracy of the 5 models in its prediction of the real values, and how it can be seen in the solid 

lines are the prediction, and the cut lines the real values. These results show that the prediction is close to the real data, which 

means that the Random Forest algorithm is predicting the real quantities almost accurately. 

 

  

 
(a) Graph comparing actual values vs predicted CO (Carbon Monoxide) in ppm. 
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(b) Graph comparing actual values vs predicted CO2 (Carbon Dioxide) in ppm. 

 
(c) Graph comparing actual values vs PM 1 predictions in ppm. 

 
(d) Graph comparing actual values vs PM 2.5 predicted values in ppm. 
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(e) Graph comparing actual values vs PM 10 predictions in ppm. 

Fig. 6. Timeline graphs show that Random Forest´algorithm is indeed predicted in a functional way. 

 
Fig. (a) shows actual vs. predicted CO values for future days. While the model captures general trends, it slightly overestimates 

peaks and underestimates valleys, reflecting the moderate R².  

 

The predictions closely follow the real data over time. The model correctly adjusts to drops and spikes, reinforcing the high R² as 

can see in Fig. 6(b). 

 

An almost perfect overlap of actual and predicted values is shown. The model is highly accurate for PM1.0, maintaining 

consistency with the exceptional R² in Fig. 6(c). 

 

As with PM1.0, the Fig. 6(d) predictions closely match actual measurements, confirming the reliability of the model over time for 

this particulate. 
 

Despite some deviation at peaks, the model follows the trend well. Slight discrepancies reflect the higher MAE from Fig. 6(e), 

but the model still maintains acceptable accuracy for time-series prediction. 

 

Overall, the PMS5003 sensor was not in a great calibration, the Random Forest model achieved to predict the real values. 

 

The reason the trained model did not come close to the high or low peaks, if any, is because it detected that outliers exist in the 

actual data, and the trained model itself ruled them out in its predictions. As mentioned earlier, in this code the trained model is 

only learning to predict. If it is required to show future days, later there is another code where it does predict them, that is in Figure 

7. 

 

5.4 Future Prediction Code 
 

Unlike individual pollutant plots, this consolidated Fig. 7 allows for a direct comparison of predicted trends for five major air 

quality indicators: CO, CO₂, PM1.0, PM2.5, and PM10. Such a combined view is particularly useful for identifying interrelated 

patterns or discrepancies between gases and particulate matter in each environment. This type of long-range visualization supports 

planning decisions in health, mobility, and environmental control policies by revealing pollutant behavior over extended periods 

in a simple yet comprehensive format. 

 

In the section of the code of Fig. 7 corresponding to the prediction of future days, a maximum limit of one week is established, 

equivalent to 7 days, i.e. 168 hours. The choice of this time interval is based on its feasibility, since it is more likely to obtain 
accurate pre-dictions in the short term, like weather forecasts, which commonly cover up to seven days. 
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Fig. 7. Random Forest model predictions in a maximum week. 

 

6 Discussion 

 
Studies such as (Parmpreet Singh et al., 2022; Kamsing, et al., 2025) stress the importance of leveraging machine learning 

algorithms such as Random Forest, Gradient Boosting, and Neural Networks to improve pollutant prediction accuracy. Our system 

aligns with these methodologies by implementing a Random Forest model on embedded hardware, a design choice that ensures 

low cost while promoting scalability and portability, particularly in resource-constrained environments where traditional 

computing infrastructure is limited. 

 
While studies such as (Eren, et al., 2025; Parmpreet Singh et al., 2022; Kamsing, et al., 2022; Meneses-Albala, et al., 2023) focus 

primarily on densely populated urban areas with high vehicular emissions, our system was deployed in Guadalupe, Nuevo León, 

a region affected by both industrial and vehicular pollution. This contributes new regional data to the global context and supports 

the broader applicability of smart sensing approaches, particularly for mid-sized cities where continuous environmental 

monitoring is often limited. 

 

Additionally, while works such as (Wang et al., 2024) incorporate long-term seasonal datasets to enhance prediction accuracy, 

our model operates using shorter training windows and still demonstrates reliable performance. This behavior is largely attributed 

to the combination of robust preprocessing, outlier detection, and the inherent characteristics of the Random Forest algorithm, 

which tends to reduce the influence of noisy sensor readings and smooth extreme values through ensemble averaging. As a result, 

the model maintains stable predictions even when trained on limited or partially noisy datasets. Future implementations could 

integrate longer temporal datasets to further improve seasonal representation and long-term generalizability. 
 

Several researchers (Gladkova & Saychenko, 2022; Kozłowski, et al., 2025) emphasize the importance of identifying critical 

anomalies and patterns in pollutant time series, particularly for compounds such as PM₂.₅ and CO₂ (Alfano, et al., 2020). In our 

project, this challenge is addressed through the integration of time-series regression combined with outlier detection using an 

Isolation Forest algorithm. This approach allows anomalous sensor spikes—often caused by transient noise or abrupt 

environmental changes—to be identified and isolated prior to model inference, thereby reducing their impact on final predictions 

and enabling near real-time adaptive pollution alerts. 

 

Moreover, sensing hardware integration varies significantly across related studies, ranging from satellite-assisted ML frameworks 

to vehicle-mounted sensor platforms. In contrast, the primary strength of our system lies in its simplicity and modular design, 

allowing straightforward deployment in residential environments, schools, university campuses, or mobile settings such as 
vehicles for continuous, localized air quality tracking. 

 

Finally, multiple studies highlight persistent challenges associated with sensor noise, data drift, and calibration inconsistencies 

inherent to low-cost sensing devices. Consistent with these findings, our results indicate that regular sensor calibration and 
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validation against professional-grade equipment or governmental monitoring services are essential to ensure data reliability. When 

combined with appropriate preprocessing, outlier removal, and ensemble-based learning models such as Random Forest, these 

measures significantly enhance system robustness and trustworthiness. 

 

In summary, this work confirms that well-calibrated, embedded low-cost sensing systems powered by machine learning 

algorithms—particularly Random Forest—can deliver viable, scalable, and effective solutions for local and regional air quality 

monitoring, even in areas where official monitoring infrastructure is limited or unavailable.  

 

7 Conclusions 

 
The project has demonstrated accurate pollutant prediction results through the use of a Random Forest algorithm, providing 

effective support for early detection and response in situations involving elevated concentrations of harmful airborne chemicals. 

While the low-cost sensors used in this project proved effective for detecting relative changes in pollutant levels, they do not offer 

the same precision as industrial-grade sensors. Consequently, future improvements could incorporate higher-accuracy sensors 

with advanced calibration methods to enhance measurement reliability. 

 

This project initially relied on basic sensing components combined with a well-balanced artificial intelligence model, supported 

by structured programming to validate sensor performance and data consistency. These foundations highlight the importance of 

continuous research into emerging technologies aimed at addressing real-world environmental challenges and developing scalable, 

practical solutions. 

 
The proposed system distinguishes itself by utilizing low-cost sensors (MQ-7, MQ-135, PMS5003, and BME680) to collect real-

time environmental data, which is subsequently processed by a Random Forest model to predict air pollutant concentrations. This 

approach offers a scalable and cost-effective solution for air quality monitoring in practical scenarios such as residential 

neighborhoods, schools and university campuses, and as supplementary monitoring in urban or peri-urban areas lacking official 

air quality stations. 

 

To the best of our knowledge, no existing patents combine these specific low-cost sensors with Random Forest algorithms for 

real-time air quality prediction, positioning this system as a novel contribution to environmental monitoring with potential 

implications for public health awareness and urban planning strategies. 

 

If further developed into a finalized product, this project could generate employment opportunities in fields such as data science, 
machine learning engineering, IoT and IIoT systems, and cybersecurity to safeguard environmental data. The real-time sensor 

readings and predictive capabilities of the AI model can support timely decision-making, the development of environmental safety 

protocols, and preventive actions to protect exposed populations in areas vulnerable to air pollution. 

 

Based on the outcomes of this work, several future development paths are envisioned. These include integrating the system into 

mobile platforms such as drones for dynamic air quality monitoring, expanding the sensing coverage to larger geographic regions, 

and designing a more robust and professional enclosure for the sensors and microcontrollers to resemble a deployable commercial 

solution. 

 

Future work will focus on: 

• Improving sensor calibration procedures to enhance measurement accuracy and reduce noise associated with low-cost 

sensing devices. 
• Incorporating meteorological variables such as temperature, humidity, wind speed, and atmospheric pressure to improve 

prediction robustness. 

• Extending data collection and training periods to capture seasonal variability and long-term pollution trends. 

• Comparing the performance of the Random Forest model with additional machine learning and deep learning approaches, 

including Support Vector Machines and neural network–based models. 
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