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Abstract. Diabetes is a chronic metabolic disease characterized by 
elevated levels of glucose in the blood (or blood sugar), which 

over time leads to severe damage to the heart, blood vessels, eyes, 

kidneys, and nerves. The most common type is type 2 diabetes, 
usually in adults, which occurs when the body becomes resistant to 

insulin or does not produce enough insulin. By using artificial 

intelligence (AI) techniques in complex problems such as disease 
diagnosis, a degree of certainty in the results has been achieved to 

identify a specific type of disease. These applications have been 

advantageous because large amounts of patient data can be 
analyzed to find patterns. This work proposes a platform for the 

prediction of type 2 diabetes based on clinical or personal 
indicators. To do this, two supervised classification models were 

constructed using the PIMA Indian Diabetes dataset and the 

Centers for Disease Control and Prevention (CDC) dataset, 
integrating both into a web platform for prediction with new data 

to support the decisions of doctors and healthcare professionals. 

By integrating different algorithms into the final predictive model 
through voting weighting, the accuracy percentage in prediction 

has been increased. 
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1 Introduction 
 

Diabetes is a disease characterized by high blood glucose levels, either because the pancreas does not produce enough insulin 

(type 1 diabetes) or the body does not properly use the insulin it produces (type 2 diabetes). High blood glucose levels over a 

prolonged period of time can cause problems in various organs such as the heart, eyes, and kidneys (World Health Organization, 

2019). The diagnosis of diabetes is based on the observation of fasting blood glucose above 1.26 g/l; this must be demonstrated 

after two observations, but a single figure above 2 g/l is enough to determine the diagnosis (Rigalleau, et al., 2019). 

 

In the healthcare sector, large volumes of data are generated daily through the use of medical records and patient monitoring 

platforms. In the case of diabetes management, various platforms have been proposed to carry out continuous monitoring and 

facilitate communication between patient and doctor through the use of mobile technologies based on the Internet of Things 

(Shan et al., 2019). Artificial Intelligence (AI) techniques applied to disease diagnosis have been used in studies of complex 

problems, achieving a degree of certainty in the results obtained in the identification of a specific type of disease. These 

applications have been advantageous because these large amounts of patient data can be leveraged to analyze them and find 

patterns, aiding in prevention and diagnosis, thus providing better medical care in general (Ávila-Tomás et al., 2021). 

 

In this way, it is possible to apply disease prediction techniques in hospitals and healthcare systems to facilitate diagnosis using 

various key indicators collected through surveys or clinical records. It is worth mentioning that blood sample analysis is 

required to obtain some of the indicators listed below (Barzallo and Barzallo, 2019): 

• Plasma glucose concentration. 

• Blood pressure (diastolic). 

• Triceps skinfold thickness. 

• 2-hour serum insulin. 

• Diabetes pedigree function.  
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This study focuses on developing a predictive model for the diagnosis of type 2 diabetes based on lifestyle indicators such as 

diet, physical activity, body mass index, among others, without requiring specialized analysis or medical help of any kind. 

Prediction is also studied using clinical indicators from the CDC (Teboul, 2021) and PIMA (UCI MACHINE LEARNING, 

2016) data sets such as blood glucose level, blood pressure, among others. With both prediction methods, a web platform is 

proposed integrating different machine learning techniques such as data mining for analysis and pre-processing, thus increasing 

the quality of the data, in addition to data balancing, that is, obtaining a uniform distribution between records of diabetic and 

non-diabetic people, in this way better results can be obtained by the different prediction algorithms integrated by means of a 

weighting of votes (Batista et al., 2004), all in architectures that can be of the ensemble type and available to the general 

population, which is useful as a first approach in the diagnosis of said disease. 

 

2 Experimental procedures 
 

Figure 1 shows the steps to follow for the construction of the diabetes predictive model. 

 

 
Fig. 1. Stages of building a diabetes predictive model. 

 

2.1 Data collection 
 

It is necessary to collect data on clinical and personal indicators. Two data entry options will be available to perform the 

prediction, achieving greater reach among the population. The data collected for this study are described below for both types of 

indicators.  

 

Clinical indicators.  

• Comes from the “Pima Indian Diabetes Dataset” compiled by the National Institute of Diabetes and Digestive 

and Kidney Diseases (UCI MACHINE LEARNING, 2016). 

• Consists of 768 samples. 

• Female patients at least 21 years old and of Pima Indian heritage. 

Personal indicators. 

• The dataset used was collected through a telephone survey by the U.S. Centers for Disease Control and 

Prevention (CDC) (Teboul, 2021). 

• It consists of 253,680 samples of men and women aged 18 and older. 

 

2.2 Preprocessing 
 

The data is prepared and made suitable for training a prediction model. The procedures to be applied depend on the conditions 

of the data set. The tasks typically applied are the following: 
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• Incomplete values. These values must be completed or filled in using various techniques, assigning the mean 

or median of the feature, predicting these values using regression or classification techniques, or discarding 

the samples. The technique will depend on the number of missing values, the type of values, and the state of 

the data set. 

• Outliers. Data are normalized by detecting outliers using data visualization techniques such as box plots and 

keeping outliers within the range of the 25th and 75th percentiles. 

• Feature selection. Based on the correlation graph of the variables and the chi-square test, because this test 

analyzes categorical data and indicates the independence of the variables with the label, the best features that 

help predict the response label are selected from here, in this case, whether the sample corresponds to a 

diabetic or non-diabetic person. 

 

At this stage, incomplete data or outliers that would affect the predictive capacity of the final model are handled. In addition, a 

feature selection is performed based on a correlation matrix and using the chi-square test to observe the relationship between the 

features. The preprocessing techniques performed on each data set are described below. It should be noted that these differ due 

to the state of the data. 

 

Preprocessing of personal indicators: This data set does not contain incomplete values because it was previously cleaned and, 

being categorical characteristics, it does not have outliers. The preprocessing performed on this data set is described below. 

 

• Data type change. The values in this data set are floats; however, it does not contain decimal values (with the 

exception of the "BMI" feature), so the data types are changed to integers, leaving the "BMI" feature in its 

original float data type. 

• Duplicate samples. Duplicate samples bias the trained model because identical records may be present in 

both the training and test sets. Therefore, 23,899 samples were eliminated, leaving a total of 229,781 records. 

• Feature selection. To select the features most closely related to the class label, the chi-square test is 

performed, which yields a score for each feature, as shown in Table 1. 

Table 1. Chi-square test of personal indicators 

Feature Score Feature Score  

PhysHlth 103705.813420 HvyAlcoholConsump      973.676965  

BMI    16667.006176 PhysActivity      656.187604  

MentHlth    13499.056578 Education      537.068918  

Age     9400.408945 Smoker      268.924145  

HighBP     8633.562752 NoDocbcCost      163.138397  

DiffWalk     8310.280494 Sex 136.998866  

GenHlth     8142.602678 Veggies       89.554915  

HeartDiseaseorAttack     6015.661944 Fruits       57.666728  

HighChol     5381.985473 CholCheck       54.155676  

Income     3748.254712 AnyHealthcare        7.883473  

Stroke 2212.060848    

 

According to the results of the chi-square test, the four features with significantly lower scores than the rest (Veggies, Fruits, 

CholCheck, AnyHealthcare) are discarded. Additionally, three features (Income, Education, NoDocbcCost) are discarded 

because they are closely related to the sample collection area. The DiffWalk feature is also discarded because it is considered 

redundant with the PhysHlth property, thus obtaining 13 final features.  

 

Pre-processing of clinical indicators: For this dataset, additional cleaning techniques are required to handle null or incomplete 

values. The preprocessing is described below. 

 

•  Null values. To detect these values, the “0” is replaced by “NaN” in the features “Glucose”, 

“BloodPressure”, “SkinThickness”, “Insulin” and “BMI”, because they represent measurements resulting 

from blood tests that by their nature cannot result in “0”. In the Table 3 shows the number of null values for 

each feature in the data set. 
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Table 3. Null values of clinical indicators. 

Feature Null quantity 

Age 0 

Pregnancies 0 

Body mass index 11 

Diastolic blood pressure 35 

Plasma glucose concentration 5 

2-hour serum insulin 374 

Diabetes Pedigree Function 0 

Triceps skinfold thickness 227 

  

 

It's worth mentioning that most of the samples with missing insulin also have null values for the other characteristics. After 

removing all the samples with null values, we have a total of 394 samples. 

 

• Feature selection. In the same way, the chi-square test is performed to evaluate the relationship of the 

characteristics with the class label, the scores obtained are shown in Table 4. 

Table 4. Chi-square test of clinical indicators. 

Feature Score 

2-hour serum insulin 3151.803403 

Plasma glucose concentration 836.037745 

Age 169.002043 

Triceps skinfold thickness 99.320379 

Pregnancies 82.598850 

Body mass index 42.847984 

Diastolic blood pressure 31.834948 

Diabetes Pedigree Function 3.971641 

  

 

With the results obtained, the diabetes pedigree function is discarded due to its low correlation with the class label. The number 

of pregnancies is also discarded since this prediction is intended to be applied to the entire adult population. Finally, the triceps 

skinfold thickness is discarded because this characteristic is used to indicate obesity. However, the body mass index is already 

available, which is easier to measure with height and weight. In this way, 5 final characteristics are obtained. 

 

2.3 Sampling 

 
After preparing the data, the dataset is split into two parts, for training and testing, in an 80/20 ratio, respectively. This split 

involves including the "random_state" parameter with any integer value. This results in identical datasets between experiments, 

allowing for comparison of the results of algorithms trained with the same samples. This is done in the same way for both 

datasets. 

 

Additionally, an “Oversampling” type resampling is applied to the training set, in order to obtain the same number of negative 

and positive samples by increasing the number of samples from the minority class. To do this, the “SMOTEENN” technique 

from the “imblearn” library is used. 

 

It is worth mentioning that, before starting to build the model, the training data must be balanced, that is, a process must be 

performed to obtain the same number of samples from diabetic and non-diabetic people. This is because the number of samples 

usually from the "non-diabetic" class tends to predominate and thanks to this process it helps prevent the model from leaning 

towards said class (it avoids biases). However, if too many synthetic samples are made, it can also affect the model's 

performance since they are created from existing samples. 
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2.4 Model construction 

 
This stage begins with the training and evaluation of various prediction models (Extra Trees, Gradient Boosting, AdaBoost, 

KNN, Random Forest, XGB, Decision Tree, Naive Bayes and Neural Networks), in such a way that by adjusting parameters 

through meshes the best configuration and the highest percentage of accuracy are obtained for each algorithm, in order to select 

the algorithms with the best performance for each data set. Then, the selected and trained models are integrated through a 

weighted ensemble of votes, that is, the probability of belonging to the positive and negative class returned by the prediction of 

each individual algorithm is averaged, this strategy is observed in Figure 2. With this integration, the aim is to increase the 

percentage of accuracy compared to the individual models, it is worth mentioning that the number of models to be integrated is 

according to each data set since a greater number of models does not mean better performance, for this purpose the ensemble is 

evaluated with the two, three or four best models. 

 

 

 
Fig. 2. Integration of algorithms. 

 

 

Predictive model: To implement this model integration, the “VotingClassifier” function from the “scikit-learn” library is used, 

with which weights are assigned as parameters with the purpose of giving greater importance to the model with the best 

performance. Figure 3 shows its coding. 

  
Fig. 3. VotingClassifier Encoding. 
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2.5 Web platform 

 
One of the main features of the solution proposed in this research is an easy-to-use and interactive interface that maintains 

correct visualization on different devices. This interface allows users to enter the required data, depending on clinical or 

personal indicators, and obtain a prediction. Figure 4 shows the data flow between the server and the client. 

 

 
Fig. 4. Information flow between client and server. 

 

 

Welcome interface: The interface contains information about diabetes and its types, also an introduction to the prediction 

platform, as shown in Figure 5. 

 

 
Fig. 5. Welcome interface. 
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Personal Indicators Interface: The web platform has a specific interface for predicting diabetes using personal indicators. 

Information is requested from the user via drop-down menus, resulting in an intuitive questionnaire and numeric fields for age, 

weight, and height, as shown in Figure 6. 

 

 
Fig. 6. Personal Indicators Interface. 

 

 

Clinical Indicators Interface: In the same way, there is an interface to make the prediction with clinical indicators where all 

fields are numeric with a provisional text or "placeholder" to intuitively indicate to the user what type of information is required, 

as shown in Figure 7. 

 

 
Fig. 7. Clinical Indicators Interface. 
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Prediction result interface: After entering the requested information for each type of indicators and pressing the “predict” 

button, the user is directed to a results interface where the highest probability (positive or negative) regarding the diagnosis of 

type 2 diabetes is presented, as shown in Figure 8.  

 

 
Fig. 8. Prediction result interface. 

 

 

2.6 Testing with individual algorithms 

 
After preparing the data sets, a selection of algorithms is made to be integrated into a final ensemble model. This model is 

constructed by integrating the selected algorithms through weighted voting. Nine different algorithms are tested to identify the 

best performing algorithms for each data set and use them in the final ensemble model. 

 

Algorithm selection: This stage is of utmost importance since the algorithms with the best performance for each data set must 

be used. Therefore, tests are carried out with nine different algorithms (Extra Trees, Gradient Boosting, AdaBoost, KNN, 

Random Forest, XGB, Decision Tree, Naive Bayes and Neural Networks). For this purpose, a grid or list of configurable 

parameters is prepared according to each algorithm. The “GridSearchCV” function of the scikit-learn library is responsible for 

executing and selecting the best combination of parameters for each algorithm based on the accuracy metric by applying cross-

validation. Once the best configuration is obtained, the area under the curve is measured, which indicates how well the model 

can distinguish between a positive and negative sample. With these results, the three best algorithms are selected based on 

accuracy and AUC metrics.  

 

Tests with algorithm integration: Once the algorithms have been selected, the next step is integration into a final predictive 

model by means of a weighting of results. For personal indicators, the best algorithms were Gradient Boosting, XGB and Neural 

Network with accuracy results of 0.8541, 0.8542 and 0.8524 respectively, regarding clinical indicators, the best algorithms were 

Naive Bayes, Gradient Boosting and Random Forest with results of 0.8607, 0.8481 and 0.8101 respectively. To perform this 

integration, the "VotingClassifier" function of the "scikit-learn" library is used, weights are assigned in order to give greater 

importance to the model with the best performance, The Table 5 shows the weights assigned to each algorithm. 

Table 5. Weights assigned in the integration of algorithms. 

Feature Score  

Personal indicators Gradient Boosting 3 

 XGB 2 

 Red neuronal 1 

Clinical indicators Naive Bayes 3 

 Gradient Boosting 2 

 Random forest 1 

   

 

Two final predictive models are obtained, one for personal indicators and one for clinical indicators. These models are capable 

of predicting a positive or negative outcome with a sample containing 13 characteristics for personal indicators and 5 values for 

clinical indicators. 
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3 Results 
 

3.1 Performance of algorithms on personal data sets 
 

The Table 6 presents the training and testing results for the 9 classification algorithms considered in the experiments. The 

training results show an accuracy rate of over 80% in all cases, with the model trained with the Adaboost algorithm standing out 

at 95%. In the testing stage, the performance in a real environment is observed since the data has never been seen by the 

predictive model. Based on the accuracy and area under the curve results, the algorithms that make up the final weighting model 

are selected. It can be observed that the GradientBoosting, XGB, and neural network algorithms stand out with an accuracy rate 

of 0.8541, 0.8542, and 0.8524, respectively. 

 

Table 6. Training and testing results with personal indicators. 

 Training             Test   

Algorithm Accuracy AUC Accuracy AUC  

Gradient Boosting 0.8537 0.8228 0.8541 0.8196  

XGB 0.8533 0.8240 0.8542 0.8189  

Neural Network 0.8517 0.8185 0.8524 0.8188  

Random Forest 0.8596 0.8534 0.8531 0.8152  

Extra Trees 0.8699 0.8825 0.8509 0.8063  

Decision Tree 0.8507 0.8093 0.8503 0.8057  

KNN 0.8518 0.8283 0.8480 0.7864  

Naive Bayes 0.8429 0.7113 0.8435 0.7122  

AdaBoost 0.9561 0.9887 0.8240 0.6457  

Decision Tree 0.8507 0.8093 0.8503 0.8057  

      

 

3.2 Performance of algorithms on clinical datasets 
 

Similarly, experiments were performed on the clinical dataset with the aim of selecting the algorithms with the best performance 

in terms of accuracy percentage and area under the curve. Table 7 shows the training results, where it can be observed that the 

majority of the algorithms reach 100% accuracy, which may indicate overtraining due to the limitation in the number of 

samples. In the results with the test dataset, a significant decrease in performance is observed in all cases; however, the selected 

algorithms have an accuracy above 80%, these being Naive Bayes, Gradient Boosting and Random Forest with an accuracy of 

0.8607, 0.8481 and 0.8101 respectively. 

Table 7. Training and testing results with clinical indicators. 

 Training             Test   

Algorithm Accuracy AUC Accuracy AUC  

Naive Bayes 0.7393 0.8325 0.8607 0.8703  

Gradient Boosting 0.8625 0.9228 0.8481 0.8618  

Random Forest 1.0000 1.0000 0.8101 0.8550  

Decision Tree 0.9478 0.9928 0.7974 0.7881  

Extra Trees 1.0000 1.0000 0.7848 0.8436  

XGB 1.0000 1.0000 0.7848 0.8518  

AdaBoost 1.0000 1.0000 0.7721 0.7289  

KNN 1.0000 1.0000 0.6835 0.6260  

Neural Network 0.6682 0.7367 0.6455 0.7314  
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3.3 Voting model performance 

 
In the Figure 9 shows the results with the test data set obtained with the final voting model for each type of indicator. In the case 

of clinical indicators, an accuracy increase of 3% is obtained with respect to the individual algorithm with the best performance 

that makes up the ensemble type integration. 

 

 
Fig. 9. Test results with final model. 

 

The Figure 10 shows the difference in area under the curve of the individual algorithms and the final voting model for the 

personal indicators, resulting in an increase of 0.0010 for the vote ensemble. 

 

 
Fig. 10. Difference in area under the curve of algorithms for personal indicators. 
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The Figure 11 shows the difference in the area under the curve of the individual algorithms and the final voting model for the 

clinical indicators. In this case, no difference is shown with respect to the best performing algorithm (Naive Bayes).. 

 

 
Fig. 11. Difference in area under the curve of algorithms for clinical indicators. 

 

 

4 Conclusions 
 

In this work, a web-based platform for predicting type 2 diabetes using clinical or personal indicators is proposed, which seeks 

to provide a first approximation for the general population in the diagnosis of this disease. To this end, two prediction models 

were developed for each type of indicator using the proposed methodology. The aim is to increase the accuracy percentage by 

integrating the best algorithms in a weighted voting system. This involves selecting the algorithms based on the results obtained 

during the experimentation stage. Based on the results obtained, the accuracy result was increased by 3% through the ensemble-

type integration of algorithms for clinical indicators compared to the individual models used in said integration. However, for 

personal indicators, the metric of the algorithm with the best performance was not surpassed following the same methodology. 

Based on the experimentation and results, the integration of algorithms with similar prediction results is analyzed, that is, they 

share the same strengths and weaknesses, which may result in a lack of diversity in the integrated models and therefore does not 

significantly improve the ensemble-type model. To obtain new results, it is desired to integrate a prediction of type 2 diabetes 

using combined indicators, that is, to make the prediction by entering clinical and personal data, in addition to increasing the 

number of samples by collecting data from health centers in order to obtain even more precise models and reduce overtraining, 

as well as considering more metrics in the evaluation and selection of models, in turn exploring the development of predictive 

models to fill in missing values, thus avoiding discarding them. 
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