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Abstract. The Capacitated Vehicle Routing Problem (CVRP) 

involves generating a route for each vehicle such that the sum of 

customer demands does not exceed the vehicle’s capacity. Each 
vehicle must depart from the depot, visit its assigned customers 

exactly once and then return to the depot, delivering a solution in 

which the total distance travelled by all vehicles is minimised. In 
this research, randomisation and the Swap local-search algorithm 

are employed to create an initial solution with a high-quality 

neighbourhood. Subsequently, Tabu Search is applied to explore 

the solution space and obtain an improved result. The proposed 

algorithms yield feasible solutions with an approximation error of 

less than 10 %, and in some instances they achieve the best-known 
solution. 
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1 Introduction 
 

The Capacitated Vehicle Routing Problem (CVRP) consists of constructing tours for vehicles with limited capacity, which start 

and end at a location known as the depot, to transfer goods from the depot to various customers, each with a demand. One salesman 

must fully satisfy the demand in a single visit. 

 

The Vehicle Routing Problem (VRP) presents many variations due to environmental restrictions. CVRP was selected from all the 

variations of the VRP. CVRP is classified as a combinatorial optimization problem belonging to the class of NP-hard problems; 

that is, the optimal solution is obtained using algorithms that use non-polynomial time, and it cannot be obtained in a reasonable 

time. The solutions have different methods to solve the CVRP, divided into exact, heuristic, and metaheuristic methods. In the 

exact methods, dynamic programming and backtracking search, among others, are more noticeable. In the heuristic methods, 

constructive algorithms and insertion algorithms, among others, stand out, and in the metaheuristic methods, Simulated Annealing 

(SA), Tabu Search (TS), and Swarms stand out. We can also find hybridizations of metaheuristics. The problem can be approached 

with different objectives. Initially, it was solved by assigning clients to vehicles based solely on demand and vehicle capacity 

without considering the route. Once the subsets were determined, the route for each vehicle was calculated, and the total cost of 

the routes was summed. A new objective was then considered, which focused on grouping the closest nodes while ensuring that 

demand did not exceed vehicle capacity. This research proposes solving a set of CVRPs with different numbers of nodes and 

vehicle capacities, using three steps: 1) obtain an initial solution with the method of randomness and nearest neighbor, 2) Local 

Search, and 3) the TS algorithm according to (Gómez Atuesta & Rangel Carvajal, 2011).   

 

Many optimisation problems need to be solved. Most of these problems have practical implications in science, engineering, 

economics and business, and are highly complex and challenging (González-Hernández et al., 2019). 

 

Problems with similar restrictions are analysed to understand the CVRP. They can be used as a starting point; for example, the 

Travelling Salesman Problem (TSP) (Flood, 1956) attacks an integral part of the VRP: the TSP focuses on creating a route in 
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which all the customers are visited only once, and the route must start and end at the same customer. The shortest path must be 

considered to make this journey, provided that the route obtained at the end yields an optimal solution as reported in the literature. 

Over the years, different studies have applied various methodologies to solve the problem, from exact, heuristic and metaheuristic 

methods. Among these, implicit enumeration methods, Branch & Bound, cutting-plane or dynamic programming techniques, 

constructive algorithms, simulated stitching, Tabu Search (TS) and Ant Colony (AC), among others, stand out. After this problem, 

the Multiple Travelling Salesman Problem (MTSP) variant was introduced (Bektas, 2006). This problem incorporates a 

warehouse, unlike the TSP, and multiple salespeople. The objective is to construct exactly one route for each salesperson so that 

each customer is visited once by one of the salespeople. The route will start and end at the warehouse and can contain, at most, a 

limited number of customers. 

 

Thus, our research problem is to find a solution to the CVRP (Lei, Laporte and Guo, 2011), which consists of creating routes for 

vehicles that will store or distribute the demand of a set of customers. Unlike the TSP and the MTSP, a new restriction has been 

added: sellers have become vehicles with a limited capacity, and the customers have a demand that must be collected or delivered 

by a single vehicle. The other variants remain the same as the MTSP. 

 

The CVRP is essential from both theoretical and practical points of view because every company needs to acquire or deliver 

merchandise to many customers with limited units. In addition, consideration must be given to the time it will take to deliver to 

each customer, the maintenance of each vehicle and the route it must take, bearing in mind that the vehicles must return to their 

point of origin. 

 

This research is a continuation of the work of (Conrado et al., 2025) and seeks to clarify the methodology used, explaining in 

depth the stages and the algorithms used. The justification for this project lies in the challenges faced by companies, large or small, 

in managing the delivery or collection of goods. Planning efficient vehicle routes that ensure each client is visited once within a 

specific time frame is crucial for reducing operational costs, such as fuel consumption and service time. The objective is to design 

an algorithm based on the TS metaheuristic to explore and evaluate feasible solutions for the CVRP, aiming to achieve a solution 

close to the optimal. 

 

Hypothesis (H1) states: if a metaheuristic algorithm efficiently generates and evaluates feasible solutions for the CVRP, it delivers 

a solution with a cost close to the optimal one. On the contrary, the null hypothesis (H0) states that if the algorithm is not a practical 

alternative, it does not deliver a solution with a cost close to the optimal one.  

   

The algorithm will be evaluated with 40 instances with the following characteristics: 10 units, 200 clients as maximum, 

considering small and medium instances, and 350 clients for large instances of the CVRPLIB library (Reinhelt, 2014).  

  

The document is organized as follows: The related work is presented in the second section, and the most relevant work and a 

timeline are provided. Section three presents the problem description. Section four presents the proposed methodology, describing 

experimental procedures in depth. Section five shows the results obtained compared with those reported in the literature. Finally, 

conclusions and future work are presented. 

 

2 Related work 
 

CVRP has been studied extensively throughout history, and various methods have been implemented to obtain a solution.  

  

Danzig and Ramser (1959) analyzed a fuel distribution problem, proposed the CVRP, and explored how fuel could be distributed 

to different gas stations, considering the capacity of the vehicles and the demand at each station. Their solution ensures that the 

company delivers on time and improves the filling times.  

 

Laporte et al. (2000) mention several heuristics that were used to achieve acceptable results for the VRP, commenting that there 

are heuristics that analyze problems where the number of trucks may or may not be a stopping parameter or where a maximum 

cost per trip can be defined and that it can also be divided into two phases to reach the solution (first part, obtain 𝑚 subsets of the 

original set and then carry out the construction of the route by applying an algorithm for TSP).  

 

Naddef and Rinaldi (2002) proposed the branch-and-cut algorithm. They mentioned that tests were performed on six instances, of 

which 2 with 135 nodes obtained favorable results for the best-known solution (BKS). 
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Di Lorenzo et al. (2022) proposed the TS metaheuristic for solving VRP. Due to computational time issues, it was noted that the 

algorithm takes longer with more than 50 nodes. It was tested with 27 instances, of which 8 obtained the same results as the BKS, 

in 11 instances, they were close to the BKS, and in 8 instances, they obtained better results than the BKS. 

  

Di Lorenzo et al. (2022) also proposed an exact algorithm (branch and cut). Twelve instances were analyzed, and a maximum 

solution time of 1 hour was considered. This excellent result allows instances of up to 35 nodes to be tested. 

  

Gendreau et al. (2008) proposed using the TS metaheuristic. Fifty-eight instances were considered, with a solution time of 24 

hours per instance, demonstrating that optimal results were obtained in 33 instances. 

  

Fuellerer et al. (2009) proposed the AC metaheuristic. It was tested with 36 instances, executing ten times for each one. The results 

obtained with TS were compared, demonstrating that the AC is better since it only managed to win against TS in 2 instances. 

  

Strodl et al. (2010) proposed variable neighborhood search and an exact algorithm (branch and link); it was tested with 36 

instances, demonstrating that a time limit must be placed to obtain favorable results, and that the algorithm does not enter a cycle. 

  

Leung et al. (2010) proposed SA and packing and tested 36 instances with an average of 110 minutes per solution, improving the 

AC algorithm. 

  

Chen, Huang, and Dong (2010) proposed a variable neighborhood descent algorithm that uses hybrid metaheuristics. Accuracy, 

speed, simplicity, and flexibility are the four criteria for evaluating a metaheuristic. This algorithm combines the strengths of 

iterated local search and variable neighborhood descent. 

  

Gómez-Atuesta and Rangel-Carvajal (2011) proposed the TS and SA algorithms; using ten instances, they could be within 5% of 

the difference against the best, of which two were equal. 

 

Mohammed et al. (2012) proposed the Genetic Algorithm (GA) and cellular-GA. They applied the GA to give a solution with a 

lower traversal cost. This algorithm is implemented in very large instances, helping to reduce processing time. 

 

Mari, Mahmudy, and Santoso (2018) proposed basic SA and enhanced SA. They mention that more iterations will increase the 

computational time. After five iterations, a better result is given for a CVRP, and enhanced SA gives a better solution to the CVRP. 

 

Herdianti, Gunawan, and Komsiyah (2021) mentioned that the CVRP problem expands exponentially, but it is possible to make 

a tour with five nodes manually. Additionally, the particle swarm optimization method (PSO) algorithm cannot solve the VRP 

with many locations; the pigeon-inspired optimization (PIO) algorithm requires the position of the pigeon and the speed to be 

defined, and each interaction is updated. When comparing algorithms, the PIO algorithm gave a solution with a lower cost, with 

an approximate difference of 2.5% compared to the solution of the PSO algorithm. 

 

Moussa (2021) mentions that the K-means algorithm was used to find subsets of the set of nodes. The algorithm assigns nodes 

using a centroid, modifies this centroid until all the nodes are associated, and then generates 𝑚 centroids once the 𝑚 subsets are 

obtained; the Dijkstra algorithm performs the tours of the 𝑚 subsets. 

 

Pacheco-Valencia et al. (2022, 2023) proposed a 3-phase heuristic algorithm. In phase 1, cities are partitioned into 𝑚 disjoint 

subsets. In phase 2, feasible tours are constructed for each subset, and phase 3 improves these tours using a hill-climbing method. 

 

 

3 Problem description 
 

Figure 1 shows a CVRP instance, P-n19-k2, which includes 19 vertices: the depot, labeled as 𝑑, and 18 customers with their 

demands, each identified by a pair of numbers separated by a comma. The instance involves two vehicles, each with a capacity of 

𝑄 = 160. 
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Fig. 1. CVRP instance P-n19-k2 (CVRPLIB, 2025) 

 

 

 

The CVRP is modeled as a complete, undirected, weighted graph.  𝐺 = (𝑉, 𝐸), as shown in Figure 1. The vertex set 𝑉 comprises 

a depot 𝑑 and 𝑛 customers, each with a demand  𝑑𝑖 (𝑑𝑑 = 0). Each edge (𝑖, 𝑗) ∈ 𝐸 has a weight 𝑤(𝑖, 𝑗), representing the Euclidean 

distance between nodes 𝑖 and 𝑗. A fleet of 𝑚 vehicles, each with a capacity 𝑄, is available to serve all customers. 

 

A solution 𝑆 is a set of 𝑚 tours, 𝑇𝑗, for 𝑗 = 1, … , 𝑚 where each tour with cardinality |𝑇𝑗| starts and ends at the depot and includes 

a sequence of customers (i.e. 𝑇𝑗 = (𝑑, 𝑡1
𝑗
, 𝑡2

𝑗
, … , 𝑡

|𝑇𝑗|

𝑗
, 𝑑)). 

 

The cost of a tour 𝑇𝑗 is the sum of distances between consecutive vertices, including the depot, as expressed in Equation 1: 

 

𝐶(𝑇𝑗) = 𝑤(𝑑, 𝑡1
𝑗
) + ∑ 𝑤(𝑡𝑖

𝑗
, 𝑡𝑖+1

𝑗
)

|𝑇𝑗|−1

𝑖=1

+ 𝑤 (𝑡
|𝑇𝑗|

𝑗
, 𝑑) 

(1) 

 

The total cost of a solution 𝑆 is the sum of the costs of all tours, as defined in Equation 2: 

𝐶(𝑆) = ∑ 𝐶(𝑇𝑗)

𝑚

𝑗=1

 
(2) 

The aim is to find a feasible solution 𝑆∗ that minimizes the total cost, 𝐶(𝑆∗) = 𝑚𝑖𝑛
𝑆

𝐶 (𝑆), while satisfying the following 

constraints: 

• All tours start and end at the depot. 

• Each customer is visited exactly once by a single vehicle. 

• The total demand served on a tour does not exceed the vehicle's capacity 𝑄. 

• Every vehicle must serve at least one customer. 
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4 Methodology 

 

 
 

Fig. 2. Flowchart of the proposed methodology 

 

The flowchart in Figure 2 illustrates the methodology employed. The process starts by reading a CVRP instance. The algorithm 

Initial_Solution() then generates a feasible initial solution, ensuring that the accumulated demand on each tour does not exceed 

the vehicle capacity. This initial solution is subsequently improved twice using the local search algorithm, 

Local_Search_By_Swapping(S), which performs vertex swaps between routes to obtain a better solution. The improved solution 

is passed to the Tabu Search algorithm, which executes insertion moves between routes while respecting vehicle capacity 

constraints. After all possible moves are explored, the algorithm delivers the final solution, aiming to approach the BKS or stay 

within a 5% difference from it. 

 
Algorithm Initial_Solution( ) 

𝑆 ← ∅     //𝑆 is initially empty 

while 𝑆 = ∅ do: 
│  𝑗 ← 1 

│  while 𝑗 ≤ 𝑚 do:     //for each tour 𝑆𝑗, where 𝑗 = 1, … , 𝑚 

│  │  𝑇𝑗 ← (𝑑) 
│  │  while ∑ 𝑑𝑖𝑖∈𝑇𝑗 ≤ 𝑄 do: 

│  │  │  Select a vertex 𝑖 randomly, with no repetition, from 𝑉 ∖ { 𝑑 } 

│  │  └  𝑇𝑗 ← 𝑇𝑗 ∪ {𝑖}     //vertex 𝑖 is added to tour 𝑇𝑗 

│  │  𝑇𝑗 ← 𝑇𝑗 ∪ {𝑑}     //depot is added to the tour 𝑇𝑗 

│  │  𝑆 ← 𝑆 ∪ {𝑇𝑗}     //tour 𝑇𝑗 is added to the solution 𝑆 
│  └  𝑗 ← 𝑗 + 1 
   if 𝑆 does not include all the vertices of 𝑉 then: 
└  └  𝑆 ← ∅ 

return 𝑆 

 

Algorithm Initial_Solution() constructs an initial solution 𝑆 by constructing 𝑚 tours, where each tour starts and ends at the depot 

𝑑, and the vertices are randomly selected from the set 𝑉 ∖ 𝑑 to be added to the tours. The algorithm begins by initializing an empty 

solution 𝑆 and setting 𝑗 = 1, representing the current tour index. For each tour 𝑇𝑗, the depot 𝑑 is added as the starting vertex. 

Then, the algorithm enters a loop where it randomly selects, without repetition, a vertex 𝑖 from the set 𝑉 ∖ 𝑑, i.e., all vertices 

except the depot, and appends it to the current tour 𝑇𝑗. This process continues as long as the total demand for the vertices in tour 

∑ 𝑑𝑖𝑖 ∈𝑇𝑗  does not exceed the vehicle capacity 𝑄. Once this condition is met, the depot 𝑑 is added as the endpoint of the tour, and 

the tour 𝑇𝑗 is included in the solution 𝑆. The procedure then moves to the next tour by incrementing 𝑗 with one and repeating the 

process until all 𝑚 tours are constructed. If any vertex remains uncovered after constructing all 𝑚 tours, the process restarts by 

resetting 𝑆 to empty. This ensures that the final solution comprises valid tours that collectively cover all vertices in the instance 

while adhering to capacity constraints. Finally, the solution 𝑆, containing all the 𝑚 tours, is returned. 

 

The initial solution, 𝑆, is improved using the algorithm Local_Search_By_Swapping(S) in two executions by iteratively swapping 

pairs of vertices within a tour or between two tours. For each vertex 𝑡𝑙
𝑗
 in the tour 𝑇𝑗, where 𝑗 = 1, … , 𝑚 and 𝑙 = 1, … , |𝑇𝑗|, 

another vertex 𝑡
𝑙′
𝑗′

 is considered for swapping, with the condition that 𝑗′ ≥ 𝑗. If the vertices belong to the same tour (𝑗′ = 𝑗), then 

𝑙′ > 𝑙. If the swap reduces 𝐶(𝑆) while maintaining the feasibility of 𝑆, the vertices 𝑡𝑙
𝑗
 and 𝑡

𝑙′
𝑗′

  are swapped. This process is repeated 

for all pairs of vertices in the solution. 
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Algorithm Local_Search_By_Swapping(S) 

 𝑗 ←  1 

 𝑙 ← 1 

while 𝑗 ≤  𝑚 do:     // for each tour 𝑇𝑗, where 𝑗 =  1, . . . , 𝑚 

│  while 𝑙 ≤ |𝑇𝑗| do:     // for each vertex 𝑡𝑙
𝑗

∈ 𝑇𝑗, where 𝑙 = 1, … , |𝑇𝑗| 

│  │  if 𝑙 ≠  |𝑇𝑗| then:     // sets values for indices 𝑗′ and 𝑙′ 
│  │  │  𝑗′ ←  𝑗 
│  │  └  𝑙′ ←  𝑙 +  1 
│  │  else: 

│  │  │  𝑗′ ←  𝑗 +  1 

│  │  └  𝑙′ ←  1 

│  │  while 𝑗′ ≤ 𝑚 do:     // for each tour 𝑇𝑗′
 

│  │  │  while 𝑙′ ≤ |𝑇𝑗′
| do:     // for each vertex 𝑡

𝑙′
𝑗′

∈ 𝑇𝑗′
 

│  │  │  │  // Calculate the gain or cost for swapping vertices 

│  │  │  │  𝛥 ← −𝑤(𝑡𝑙−1
𝑗

, 𝑡𝑙
𝑗
) − 𝑤(𝑡𝑙

𝑗
, 𝑡𝑙+1

𝑗
) − 𝑤 (𝑡

𝑙′−1

𝑗′

, 𝑡
𝑙′
𝑗′

) − 𝑤 (𝑡
𝑙′
𝑗′

, 𝑡
𝑙′+1

𝑗′

) 

│  │  │  │  𝛥 ← 𝛥 + 𝑤 (𝑡𝑙−1
𝑗

, 𝑡
𝑙′
𝑗′

) + 𝑤 (𝑡
𝑙′
𝑗′

, 𝑡𝑙+1
𝑗

) + 𝑤 (𝑡
𝑙′−1

𝑗′

, 𝑡𝑙
𝑗
) + 𝑤 (𝑡𝑙

𝑗
, 𝑡

𝑙′+1

𝑗′

) 

│  │  │  │  if 𝛥 < 0 ∧ ∑ 𝑑𝑖𝑖∈𝑇𝑗 − 𝑑
𝑡𝑙

𝑗 + 𝑑
𝑡

𝑙′
𝑗′ ≤ 𝑄 ∧ ∑ 𝑑𝜄𝜄∈𝑇𝑗′ − 𝑑

𝑡
𝑙′
𝑗′ + 𝑑

𝑡𝑙
𝑗 ≤ 𝑄 then: 

│  │  │  │  │  // If the swap reduces 𝐶(𝑆) while maintaining the feasibility of 𝑆 

│  │  │  │  │  𝑎𝑢𝑥 ← 𝑡𝑙
𝑗
     // Swap the vertices 𝑡𝑙

𝑗
 and 𝑡

𝑙′
𝑗′

 in 𝑆 

│  │  │  │  │  𝑡𝑙
𝑗

← 𝑡
𝑙′
𝑗′

 

│  │  │  │  └  𝑡
𝑙′
𝑗′

← 𝑎𝑢𝑥 

│  │  │  └  𝑙′ ← 𝑙′ + 1 
│  │  └  𝑗′ ← 𝑗′ + 1 

│  └  𝑙 ←  𝑙 +  1 
└  𝑗 ←  𝑗 +  1 
return 𝑆 

 

 

Algorithm Simple_Tabu_Search(𝑆, 𝑖𝑡𝑒𝑟𝑠, 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒) solving the CVRP. It starts with a solution 𝑆 and aims to improve it over 

𝑖𝑡𝑒𝑟𝑠 iterations. 

 

Let 𝑆𝑐𝑢𝑟  be the current solution at each iteration, initially equal to a given solution 𝑆; 𝑆𝑏𝑒𝑠𝑡 , the best solution found up to iteration 

𝑖𝑡𝑒𝑟, also initialized to 𝑆, and 𝐿 is the tabu list, initially equal to an empty set, which is used to avoid the use of relocation moves 

(described later) that are included in it, unless they lead to an improvement in 𝑆𝑏𝑒𝑠𝑡 . 

 

The relocation strategy involves evaluating whether relocating one of the vertices each an edge (𝑖, 𝑗) ∈ 𝑆𝑐𝑢𝑟  iteratively, first 

considering 𝑖 and then 𝑗, starting with the highest-cost edges and progressing to lower-cost edges. In each iteration, the first 

feasible relocation move found is selected, provided it satisfies one of the following conditions: i) the move is not in 𝐿 and 

generates a solution with a lower cost than 𝐶(𝑆𝑐𝑢𝑟), or ii) the move is in 𝐿 and generates a solution with a lower cost than 𝐶(𝑆𝑏𝑒𝑠𝑡) 

(aspiration criterion). If no cost-reducing move is available after evaluating the relocation of all vertices in 𝐶(𝑆𝑐𝑢𝑟), the relocation 

move that increases the cost the least is performed. 

 

In each iteration 𝑖𝑡𝑒𝑟, a set of edges 𝐸𝑆 is constructed, containing the edges of the current solution 𝑆𝑐𝑢𝑟 , ordered in non-increasing 

order by their weights. The variables 𝑀𝑖𝑚 and 𝐶𝑖𝑚 are declared to store the movement that minimally increases the cost of 𝑆𝑐𝑢𝑟  

and the resulting cost of that relocation movement, respectively. These variables are initialized as an empty set and a very large 

value, and are used in cases where no relocation movements reduce the cost of 𝑆𝑐𝑢𝑟 . A binary variable 𝑓𝑙𝑎𝑔, is also declared to 

indicate whether a valid movement has been performed (𝑓𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒) during the iteration. 

 

The evaluation of possible movements is carried out by exploring the edges in 𝐸𝑆 using the index 𝑖. For each edge, the relocation 

of its vertices, assigned to the variable ν, is analyzed by traversing the vertices in 𝐸𝑆𝑖
with the index 𝑗 (i.e., ν ← 𝐸𝑆𝑗𝑖

). Then, a new 

set of edges 𝐸′
𝑆 is constructed, containing those connected to ν, ordered in non-decreasing order by their weights.  
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Algorithm: Simple_Tabu_Search(𝑺, 𝒊𝒕𝒆𝒓𝒔, 𝒕𝒂𝒃𝒖𝑻𝒆𝒏𝒖𝒓𝒆) 
𝑆𝑐𝑢𝑟 ← 𝑆      // current solution 

𝑆𝑏𝑒𝑠𝑡 ← 𝑆     // best solution found 
𝐿 ←  ∅     // Tabu list 

𝑖𝑡𝑒𝑟 ←  0     // number of iterations executed 

while 𝑖𝑡𝑒𝑟 ≤  𝑖𝑡𝑒𝑟𝑠 do:     // as long as no "iters" iterations have been executed 

│  𝐸𝑆 ← { (𝑖, 𝑗) |(𝑖, 𝑗) ∈ 𝑆𝑐𝑢𝑟 ; 𝑖, 𝑗 ∈ 𝑉 } 

│  Sort 𝐸𝑆 in non-increasing order by weights     // Initially |𝐸𝑆| = 𝑛 + 𝑚 edges 

│  𝑀𝑖𝑚 ← ∅     // variable to store minimum insertion move 

│  𝐶𝑖𝑚 ← ∞     // cost if 𝑀𝑖𝑚 is realized 

│  𝑓𝑙𝑎𝑔 ←  𝐹𝑎𝑙𝑠𝑒     // 𝑇𝑟𝑢𝑒 if movement was done in the current iteration 

│  𝑖 ←  1 

│  while 𝑓𝑙𝑎𝑔 =  𝐹𝑎𝑙𝑠𝑒 ∧  𝑖 ≤ |𝐸𝑆| do:     // index 𝑖 traverses each edge in 𝐸𝑆 

│  │  𝑗 ←  1 

│  │  while 𝑓𝑙𝑎𝑔 =  𝐹𝑎𝑙𝑠𝑒 ∧ 𝑗 ≤  2 do: 

│  │  │  𝜈 ← 𝐸𝑆𝑗𝑖
     //𝜈: Vertex in position 𝑗 in edge 𝐸𝑆𝑖

 

│  │  │  𝐸𝑆
′  ← { (𝜈, 𝑙)  |  (𝜈, 𝑙)  ∈ 𝐸;   𝜈, 𝑙 ∈ 𝑉;  𝜈 ≠ 𝑙 } 

│  │  │  Sort 𝐸𝑆
′ in non-decreasing order by their weights //Initially |𝐸𝑆

′| = 𝑛 − 1 edges 

│  │  │  𝑘 ←  1 

│  │  │  while 𝑓𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑘 ≤ |𝐸𝑆
′| do:     //index 𝑘 traverses each edge in 𝐸𝑆

′ 

│  │  │  │   (𝜈, 𝜔) ← 𝐸𝑆𝑘

′      //(𝜈, 𝜔): Edge in position 𝑘 in 𝐸’𝑆 

│  │  │  │   𝑆𝛼, 𝑝 ← Locate the tour 𝑆𝛼 and position 𝑝 of vertex 𝜈 within 𝑆𝑐𝑢𝑟 

│  │  │  │   𝑆𝛽, 𝑞 ← Locate the tour 𝑆𝛽 and position 𝑞 of vertex 𝜔 within 𝑆𝑐𝑢𝑟 

│  │  │  │  if ∑ 𝑑𝜄𝜄∈𝑆𝛽 + 𝑑𝜈 ≤ 𝑄 then: 

│  │  │  │  │  𝑀1 ← (1, 𝑡𝑝−1
𝛼 , 𝜈, 𝑡𝑝+1

𝛼 , 𝑡𝑞−1
𝛽

, 𝜔)     //𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡_1 (𝑀𝑖𝑚1
= 1) 

│  │  │  │  │  𝑀2 ← (2, 𝑡𝑝−1
𝛼 , 𝜈, 𝑡𝑝+1

𝛼 , 𝜔, 𝑡𝑞+1
𝛽

)     //𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡_2 (𝑀𝑖𝑚1
= 2) 

│  │  │  │  │  Δ𝐺 ← −𝑤(𝑡𝑝−1
𝛼 , 𝜈) − 𝑤(𝜈, 𝑡𝑝+1

𝛼 ) + 𝑤(𝑡𝑝−1
𝛼 , 𝑡𝑝+1

𝛼 )     //gain for removing 𝜈 from 𝑆𝛼 

│  │  │  │  │  Δ𝐶1 ← 𝑤 (𝑡𝑞−1
𝛽

, 𝜈) + 𝑤(𝜈, 𝜔) − 𝑤 (𝑡𝑞−1
𝛽

, 𝜔)     //cost for 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡_1 

│  │  │  │  │  Δ𝐶2 ← 𝑤(𝜔, 𝜈) + 𝑤 (𝜈, 𝑡𝑞+1
𝛽

) − 𝑤 (𝜔, 𝑠𝑞+1
𝛽

)     //cost for 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡_2 

│  │  │  │  │  if Δ𝐺 + Δ𝐶1 < 0 ∨ Δ𝐺 + Δ𝐶2 < 0 then:     //if 𝑀1 or 𝑀2 improve 𝑆𝑐𝑢𝑟 

│  │  │  │  │  │  if (𝑀1 ∉ 𝐿 ∧ Δ𝐶1 ≤ Δ𝐶2) ∨ (𝑀1 ∈ 𝐿 ∧ C(𝑆𝑐𝑢𝑟) + Δ𝐺 + Δ𝐶1 < C(𝑆𝑏𝑒𝑠𝑡)) then: 

│  │  │  │  │  │  │  𝑇𝛼 ← 𝑇𝛼 ∖ {𝜈} 

│  │  │  │  │  │  │  𝑇𝛽 ← Insert 𝜈 into 𝑆𝛽 between 𝑡𝑞−1
𝛽

 and 𝜔 

│  │  │  │  │  │  │  𝐿 ← 𝐿 ∪ 𝑀1     // If |𝐿| > 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒, remove the oldest item in 𝐿 

│  │  │  │  │  │  └  𝑓𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒 

│  │  │  │  │  │   else if (𝑀2 ∉ 𝐿 ∧ Δ𝐶2 < Δ𝐶1)  ∨ (𝑀2 ∈ 𝐿 ∧ 𝐶(𝑆𝑐𝑢𝑟) + Δ𝐺 + Δ𝐶2 < 𝐶(𝑆𝑏𝑒𝑠𝑡)) then: 

│  │  │  │  │  │  │  𝑇𝛼 ← 𝑇𝛼 ∖ {𝜈} 

│  │  │  │  │  │  │  𝑇𝛽 ← Insert 𝜈 into 𝑇𝛽 between 𝜔 and 𝑡𝑞+1
𝛽

 

│  │  │  │  │  │  │  𝐿 ← 𝐿 ∪ 𝑀2     // If |𝐿| > 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒, remove the oldest item in 𝐿 

│  │  │  │  │  └  └  𝑓𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒 

│  │  │  │  │  else:     //if none of the moves, 𝑀1 or 𝑀2, improve 𝑆𝑐𝑢𝑟 

│  │  │  │  │  │  if Δ𝐶1 ≤ Δ𝐶2 ∧ Δ𝐺 + Δ𝐶1 < 𝐶𝑖𝑚 then: 

│  │  │  │  │  │  │  𝑀𝑖𝑚 ← 𝑀1 

│  │  │  │  │  │  └  𝐶𝑖𝑚 ← Δ𝐺 + Δ𝐶1 

│  │  │  │  │  │  else if Δ𝐶2 < Δ𝐶1 ∧ Δ𝐺 + Δ𝐶2 < 𝐶𝑖𝑚 then: 

│  │  │  │  │  │  │  𝑀𝑖𝑚 ← 𝑀2 

│  │  │  │  │  └  └  𝐶𝑖𝑚 ← Δ𝐺 + Δ𝐶2 

│  │  │  └  𝑘 ←  𝑘 +  1 

│  │  └  𝒋 ← 𝒋 + 𝟏 

│  └  𝑖 ← 𝑖 + 1 

│  if 𝑓𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝐶𝑖𝑚 ≠ ∞ then: 

│  │  if 𝑀𝑖𝑚1
= 1 then: 

│  │  │  (1, 𝑡𝑝−1
𝛼 , 𝜈, 𝑡𝑝+1

𝛼 , 𝑡𝑞−1
𝛽

, 𝜔) ← 𝑀𝑖𝑚 

│  │  │  𝑆𝛼 ← 𝑆𝛼  ∖ {𝜈} 

│  │  └  𝑆𝛽 ← Insert 𝜈 into 𝑆𝛽 between 𝑡𝑞−1
𝛽

 and 𝜔 

│  │  else: 

│  │  │  (2, 𝑡𝑝−1
𝛼 , 𝜈, 𝑡𝑝+1

𝛼 , 𝜔, 𝑡𝑞+1
𝛽

) ← 𝑀𝑖𝑚 

│  │  └  𝑆𝛼 ← 𝑆𝛼 ∖ {𝜈} 

│  └  𝐿 ← 𝐿 ∪ 𝑀𝑖𝑚     // If |𝐿| > 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒, remove the oldest item in 𝐿 

│  if 𝐶(𝑆𝑐𝑢𝑟) < 𝐶(𝑆𝑏𝑒𝑠𝑡) then: 

│  └  𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑐𝑢𝑟 

└  𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 

return 𝑆𝑏𝑒𝑠𝑡 
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The edges in 𝐸′
𝑆 are traversed using the index 𝑘, evaluating every possible relocation movement for 𝜈. During each evaluation, 

the possible relocations of 𝜈 to new positions in different routes are determined, ensuring that the vehicle's capacity 𝑄 is not 

exceeded. For each potential movement, 𝑀1 and 𝑀2, the gain, Δ𝐺, from removing 𝜈 from its current position 𝑝 within the route 

𝑆𝛼 is calculated, as well as the costs, Δ𝐶1 and Δ𝐶2, associated with its insertion into the new positions: between vertices  𝑡𝑞−1
𝛽

 and 

𝑡𝑞
𝛽

, and 𝑡𝑞
𝛽

 and 𝑡𝑞+1
𝛽

, respectively, in route 𝑆𝛽. If any movement is not in the tabu list, 𝐿, and improves the cost of  𝑆𝑐𝑢𝑟 , its 

execution, it is considered; otherwise, if the move is in 𝐿 and the cost obtained for that move is less than the cost of 𝑆𝑏𝑒𝑠𝑡 , then the 

aspiration criterion is used to perform that move. If no movement improves 𝑆𝑐𝑢𝑟 , the movement that least increases the cost is 

stored in 𝑀𝑖𝑚, and its associated cost is stored in 𝐶𝑖𝑚. 

 

If, after exploring all possible moves, none is found that improves 𝑆𝑐𝑢𝑟 , then the movement stored in 𝑀𝑖𝑚 is performed. Finally, 

if 𝑆𝑐𝑢𝑟  results in a cost lower than the best solution found so far, 𝑆𝑏𝑒𝑠𝑡 , the latter is updated with 𝑆𝑐𝑢𝑟 . 

 

Once all iterations are completed, the algorithm returns 𝑆𝑏𝑒𝑠𝑡  as the best solution found. 

 

5 Results and discussion 

 
The CVRP data instances were obtained from the CVRP Library (Reinhelt, 2014). Each instance has a file name; its last digits 

refer to the number of nodes considered. The internal structure of this file has the file name, name of the author, type (CVRP), 

dimension (number of nodes), capacity, coordinates of the nodes section, demand section, and depot section. The nodes section 

has the 𝐼𝐷 number of the node, 𝑋, and 𝑌 coordinates. The demand section has the number of the node and its demand. The depot 

section has depot identifiers. This information was read and stored in a data node structure formed with 𝐼𝐷, 𝑋, 𝑌and demand. 

 

The hybrid algorithm developed in this project was coded in Python 3.9 and executed on a DELL Inspiron 15 3000 laptop with 

the following specifications: Intel(R) Core(TM) i3-1005G1 CPU at 1.20GHz, 8GB RAM, running Windows 11 Home Single 

Language.   

 

Table 1 shows the results obtained using seven Augerat instances taken from the CVRP library and solved by our proposal. The 

first column lists the instance name, the second column shows the BKS for each instance, the third column provides the cost 

obtained using the Random-Insertion (RI) plus Tabu Search (TS), and the fourth column displays the percentage difference 

between the RI + TS algorithm and its BKS. The fifth column presents the cost obtained with RI+ TS + Intensification Stage, and 

the sixth column shows the percentage difference between the results of this previous approach and its BKS. The average % 

difference is shown at the end of Table 1, 14.52 for RI + TS, and 5.45 for the proposed methodology. 

Table 1. Comparison  BKS versus Random-Insertion(RI) + TS, versus RI+TS+ Intensification 

Instance BKS RI + TS % 

difference 

RI +TS + 

Intensification 

% 

Difference 

A-n32-k5 784.000 839.691 7.103 792.612 1.098 

A-n33-k5 661.000 721.092 9.091 685.956 3.775 

A-n33-k6 742.000 889.327 19.855 746.026 0.543 

A-n34-k5 778.000 868.493 11.631 834.986 7.325 

A-n36-k5 799.000 859.872 7.619 854.577 6.956 

A-n37-k5 669.000 852.354 27.407 725.681 8.472 

A-n37-k6 949.000 1128.775 18.944 1043.943 10.005 
  Average % 14.52 Average % 5.45 

 

Table 2 shows the results obtained using the instances taken from the CVRP library and solved by Gómez-Atuesta and Rangel-

Carvajal (2011). The first column lists the instance name, the second column shows the BKS for the instance, the third column 

provides the cost obtained using the proposed hybrid algorithm, and the fourth column displays the percentage difference between 

the proposed hybrid algorithm and the BKS. The fifth column presents the cost reported by Gómez-Atuesta and Rangel-Carvajal 

(2011), and finally, the sixth column shows the percentage difference between the results of these authors and the BKS. 
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Table 2. Comparison versus Gomez-Atuesta and Rangel-Carvajal (2011) 

Instance BKS Hybrid 

Algorithm 

% 

difference 

Gomez et al. 

2011 

% 

difference 

E-n16-k3  262 278.726  6.384  284.23  8.485  

E-n23-k3  569 568.562  -0.077  568.56  -0.077  

E-n33-k4  845 868.644  2.798  844.29  -0.084  

P-n50-k10  696 776.565  11.573  732.50  5.244  

P-n22-k2  216 221.427  2.513  217.85  0.856  

P-n55-k10  694 730.93  5.321  720.76  3.856  

M-n200-k17  1373 1559.536  13.586  1579.09  15.009  

 

Table 2 shows that our hybrid approach obtained two better solutions than the one provided by (Gómez-Atuesta & Rangel-

Carvajal, 2011) and obtained the BKS for E-n23-k3. This solution is shown in Fig. 6a. Conversely, the proposed solution provided 

solutions close to BKS, for instance, E-n33-k4 and P-n22-k3. 

 
(a)                                                           (b) 

Fig. 3. The Best-Known Solution (BKS) for instance E-n23-k3, a) proposed, b) reported in the literature 

 

As shown in Figure 3, the proposed solution (a), for instance, E-n23-k3, is equal to the BKS (b) reported in the literature. 

 

 

6 Conclusions 

 
The proposed hybrid Tabu Search algorithm addresses the problem in stages, allowing feasible results to be obtained. In some 

cases, the deviation from the best-known solution is below 5 % and even zero, but in others it exceeds 10 %. Based on the results 

obtained, we conclude that H1 is true and the objective was met. 

 

For future work, we propose combining the swap and insertion algorithms within Tabu Search. We intend to test the algorithm on 

real-world problems; in particular, we are interested in applying the methodology to smart cities, such as smart waste collection, 

product delivery by a fleet of electric vehicles and multi-layer transportation systems. Our aim is to provide real-time mobile apps 

to track vehicles and their routes and to estimate arrival times in these scenarios. 
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