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Abstract. This study introduces a technique for identifying the | Article Info

presence of the parasite Trypanosoma cruzi in video recordings, the | Received May 20, 2025.
primary cause of Chagas disease. Early diagnosis—especially | Accepted Dec 11, 2025.
during the acute phase—is vital to prevent serious complications.
The primary contribution of this work is a computational algorithm
capable of detecting the presence of Chagas parasites in capillary
tubes containing blood samples. While prior algorithms relied on
stained blood samples, this study employs unstained blood samples,
utilizing the motility of living parasites for detection. The proposed
approach combines optical flow estimation using Farnebdck’s
algorithm with a classification stage where several machine learning
models were evaluated. Among these, the best performance in terms
of accuracy was achieved by a convolutional neural network based
on the ResNet-18 architecture. The dataset consists of 24 videos
totaling 32 minutes of recording. The results demonstrate optimal
performance, achieving a F1-score of 0.9383.
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1 Introduction

Chagas disease is a chronic condition caused by the Trypanosoma Cruzi (T. cruzi) parasite found mainly in Latin American
regions. Just in Mexico, the estimation is that more than one million people are infected with this parasite (Sanchez-Patifio et al.,
2021). Triatomine bugs, commonly known as kissing bugs, are a type of reduviid bug that can carry T. cruzi in their guts and
feces. They feed on pets, wild animals, or human blood by night when they are sleeping. It is common for the bugs to defecate
while feeding. If a person scratches around the wound, the kissing bug feces may get into the bite, and that person is infected.
Another less common way to get infected is during childbirth, by ingesting contaminated food, blood transfusions, etcetera (Khan
etal., 2011).

Once infected, Chagas disease evolves in the individual in two stages; the first stage called the acute phase, and the second stage
called the chronic phase. The acute phase initiates when the parasite enters the body and lasts for a few weeks or months. During
this phase, people may experience fever, tiredness, headache, loss of appetite, vomiting, rash, or may not present any symptoms
at all. This can make it hard to diagnose Chagas disease. The chronic phase, on the other hand, may take years to develop. It is in
this phase when people experience heart or other life-threatening problems. Early diagnosis of Chagas disease is relevant.
Throughout the acute phase, medications are prescribed to kill the parasite. However, if Chagas disease reaches the chronic phase,
medications will no longer be able to cure the disease. They may be prescribed to young people only to slow the progression of
the disease and manage some health complications that may appear.

Detecting T. cruzi is most straightforward during the acute phase of the disease when the parasites are actively circulating in the
bloodstream. Thus, the examination of blood samples serves as a means to verify the presence of parasitemia in a human
individual. The most prevalent method for diagnosis involves creating a small layer of blood on a microscope slide, known as a
stained smear, which is then examined. Nevertheless, this procedure needs a certain amount of time for the processing of samples.
The blood samples are stained by saturating the slide containing the sample with dye and allowing it to sit undisturbed for
approximately 7 minutes. Next, a fixative solution consisting of phosphate-buffered saline is applied onto the slide and left
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undisturbed for an additional 7 minutes. Ultimately, the extraction of liquids is accomplished by employing distilled water, thereby
rendering the blood smear prepared for scrutiny under a microscope. As previously mentioned, this procedure needs expertise in
manipulating laboratory apparatus and around twenty minutes for each sample preparation.

In this paper, we present a completely different approach to detecting T. cruzi in blood samples. We no longer use blood smears
but capillary tubes where the parasite is still alive and moving. We take advantage of this and design a pipeline with two main
steps: optical flow to detect movement and classification to confirm the presence of the parasite.

The rest of the paper is organized as follows: Section II contains a review of different methods for T. cruzi detection; Section III
sketches our proposal with a new type of data.

2 Review

To the best of our understanding, all existing computational techniques for detecting T. cruzi use still images of stained blood
samples. For instance, (Uc-Cetina et al., 2015) is based on the use of an AdaBoost algorithm, (Morais et al., 2022) uses standard
machine learning algorithms on images captured with a cell phone camera, (Pereira et al., 2022) and (Sanchez-Patifio et al., 2021)
more recently developed deep learning algorithms based on convolutional networks for blood sample images and histopathological
images respectively. Finally, (Ojeda-Pat et al., 2022) is the only work known to propose an algorithm for parasite segmentation.

Despite the achievements of the aforementioned works, there remain numerous challenges that must be addressed in order to
prepare them for practical application in diagnosing real-life situations. For example, the standard dimensions of a microscope
slide are 75 by 26 millimeters, whereas Trypanosomes have a length ranging from 12 to 30 micrometers. Hence, locating a parasite
within a vast area under the microscope can be challenging.

In the upcoming section, our approach includes optical flow methods in addition to classification algorithms to identify regions
of intense motion. A quite common method for achieving this is through the use of optical flow algorithms. Current state-of-the-
art techniques for computing optical flow rely on neural networks. Several networks used for optical flow computation include
FlowNet (Dosovitskiy et al., 2015), DeepFlow (Weinzaepfel et al., 2013), LiteFlow (Hui et al., 2020), and others. Models for all
of these networks can be obtained with parameters that have been trained using either one or both of the most often used databases
connected with optical flow, such as the KITTI Vision Benchmark suite (Geiger et al., 2012) or MPI Sintel optical flow dataset
(Butler et al., 2012). Regrettably, these models exhibit poor performance when used to compute the optical flow of films depicting
blood samples. For this work, we utilize a traditional method for computing optical flow. We chose the dense optical approach
described in (Farnebick, 2003) because of its flexibility and simplicity of implementation.

3 Proposal

As opposed to the stained smear method, we suggest a more robust technique involving placing a small amount of blood in a Imm
diameter capillary tube, followed by centrifugation to separate the blood components. Subsequently, the sample is placed under a
microscope, with the focus solely on the area where the red blood cells terminate, as this is where the parasites will have clustered.
There exists a significant distinction between the two approaches. The stained smear approach yields static images, whereas the
capillary tube method produces videos. In the latter, the parasite remains alive and in constant motion. There is also no need to
stain the blood sample in the tube. In Figure 1, we illustrate the disparity between the two approaches. The left image in Fig. 1
displays a stained blood sample that contains a T. cruzi. The right image in Fig. 1 displays a single frame extracted from a video
clip captured from a capillary tube, showcasing a compact cluster of T. cruzi parasites. The parasites in the video frame are hardly
discernible based on their shape or color. Nevertheless, by analyzing a sequence of successive frames, skilled technicians can
effortlessly distinguish the parasites based on their distinct motion, which sets them apart from other objects present in the video.
It is noteworthy that the T. cruzi parasite exhibits a remarkably rapid and erratic motion in comparison to other things captured in
the videos, such as erythrocytes, leukocytes, and other type of parasites.
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Fig. 1. To the left, a stained smear of blood sample showing a T. cruzi parasite. To the right, a frame extracted from a video
footage of a capillary tube showing a group of parasites.

This study presents a computational technique that aims to replicate the inherent human capability to detect and track the fast and
unpredictable movement of an object, specifically the T. cruzi. The technique comprises of two distinct stages: object detection
and image classification.

In this work, we use two essential elements of computer vision: object detection and image classification. The first, involves
detecting and locating objects in images or videos while the second is the process of assigning a specific label to an image or a
specific region of interest (ROI) within an image.

In this study, our focus lies in the identification of objects (parasites) exhibiting swift motion. To do this, we employ optical flow
approaches, which entail accurately calculating the direction and magnitude of movement for either all or a subset of pixels within
an object between two consecutive frames and then making a classification through machine or deep learning techniques.

4 Database

The video database we possess comprises of 24 videos taken from different blood samples from different infected mice. Overall,
we have 32 minutes of footage, with a frame rate of 20 frames per second. This footage was captured at the Dr. Hideyo Noguchi
Regional Research Center, which is affiliated with the Autonomous University of Yucatdn. Some sections of the recordings
contain depictions of T. cruzi, and some others do not. Furthermore, videos exhibit a wide range of approaches, varying
illuminations, and different levels of motion when capturing the parasites.

Additionally, we possess a collection of images derived from the videos. To construct this collection, we used a generic optical
flow algorithm to identify ROIs in the video where there is significant motion and to extract corresponding images from those
ROIs. This database has 9547 images, each sized 70 by 70 pixels, in which some level of movement was detected. Then, skilled
technicians manually classified each image as containing or not a parasite obtaining a total of 4,776 positive images and 4,771
negative ones. Several illustrations from this database are displayed in Fig. 2.
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Fig. 2. Top row: ROIs containing a parasite. Bottom row: ROIs without a parasite

5 Methodology

The Fig. 3 provides an extensive illustration of the pipeline for detecting T. cruzi parasites in a video footage, showcasing the
detailed steps of our proposed methodology.

The first step in the algorithm is to find the optical flow, that is, the vectors of motion, we use Farnebéck’s algorithm (Farnebéck,
2003). This algorithm involves partitioning the image into smaller sections and estimating the movement inside each section using
polynomial expansion. The technique computes the flow vectors by comparing the polynomial representations of consecutive
frames, which indicate the movement of pixels from one frame to another. Throughout some experiments, we found the following
optimal parameters for our video frames: image scale to build pyramids for each image equal to 0.5, the number of pyramid layers
equal to 3, the average window size selected is 15, the number of iterations to be performed at each pyramid level equal to 3, the
size of the pixel neighborhood equal to 5, and the standard deviation of the Gaussian kernel used to compute smooth derivatives
equal to 1.2.

The second stage involves using the pixel’s movement vector to identify ROIs that exhibit significant movement, considering the
specific video being analyzed. We employ a thresholding approach to carry out this task. It is preferable for this threshold to be
adaptable to accurately reflect the situations depicted in the video. To get the most effective threshold value, a Gaussian filter is
used on the movement vector of two consecutive frames. This involves sliding a window with dimensions of 70 x 70 over the
optical flow array to calculate the average magnitude of the motion. The threshold for motion magnitude is originally determined
by selecting the highest value among all the averages calculated for each pair of successive frames in the video. The preceding
approach involves analyzing the whole video to decide the most suitable thresholding value. Long videos may not be advisable
for this approach. Alternatively, one can employ a dynamic threshold that is regularly updated after a certain number of frames.
This allows for the thresholding value to be adjusted whenever a new maximum value is discovered.

Two
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Fig. 3. Video footage analysis pipeline to detect T. cruzi parasites.
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The third phase involves isolating the regions of rapid motion by employing a connected components method.

The fourth step involves eliminating ROIs that exhibit rapid motion and do not correlate to parasites. This is achieved by
employing a classification algorithm. The incorrect detections mostly result from the motions of the organelles present in the
blood, the sedimentation movement that occurs when the capillary tube is allowed to settle after centrifugation, and the
unintentional displacement of the camera. We conducted experiments with various classifiers, including support vector machines
(SVM) (Vapnik, 1997), logistic regression and decision trees (James et al., 2023), random forest (RF) (Breiman, 2001), multi-
layer perceptron (MLP) (Rosenblatt, 1958), and residual convolutional networks (ResNet) (He et al., 2016).

The practical realization of the aforementioned algorithms requires the choice of several parameters. Here, we provide a full list
of the essential variables for each algorithm that was evaluated.

SVM. The support vector machines approach allows for the variation of three parameters: the trade-off parameter C, the kernel
parameter a, and the kernel type.

Logistic regression. The parameters for logistic regression (LG) are the regularization parameter C and the solver type.
Decision Tree. The decision tree (DT) adjusts splitting criterion, the maximum depth, the maximum features, and the a value.

Random Forest. The random forest (RF) model is characterized by three parameters: the maximum depth, which determines the
maximum number of levels in each decision tree; the maximum number of characteristics to examine at each split; and the number
of estimators, which refers to the number of decision trees in the forest.

Multi-Layer Perceptron. In the multi-layer perceptron (MLP), the hidden layers, activation function, solver, a, and learning rate
can change.

Residual Network. Residual networks (RN) in conventional implementations often employ rectified linear units (ReLu) as
activation functions and essentially modify the number of hidden layers. The typical values consist of 18, 34, 50, 101, and 154
layers. Pre-trained models require input images that have been normalized.

To select the optimal parameters for each classifier, we used a grid search technique with a 5-fold cross-validation where at each
fold, the dataset is divided into two parts: 80% for the training set and 20% for the test set. In Table I, we display the optimal
parameters and scores for each classifier.

6 Results

In this section, we evaluate our machine and deep learning models both quantitatively and qualitatively.
Quantitative assessment

In the context of medical image-based diagnosis, the performance of machine learning models must be assessed using metrics that
reflect clinical priorities. Four commonly used metrics are accuracy, precision, recall (sensitivity), and F1-score, each providing
distinct insights into diagnostic reliability.

o Accuracy represents the proportion of correctly classified cases among all cases. While useful as an overall indicator,
accuracy can be misleading in imbalanced datasets typical of medical imaging, where healthy cases often outnumber
diseased cases. A model may achieve high accuracy by predominantly predicting the absence of disease, yet fail to detect
true positives.

o Precision measures the proportion of true positive predictions among all positive predictions. High precision is clinically
relevant because it minimizes false positives, reducing unnecessary treatments, patient anxiety, and additional diagnostic
procedures.

o Recall (Sensitivity) quantifies the proportion of actual positive cases correctly identified. In clinical practice, recall is
critical since false negatives—missed disease cases—can lead to delayed treatment and adverse outcomes. Screening
applications often prioritize recall to ensure that as many true cases as possible are detected.
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o Fl-score is the harmonic mean of precision and recall, providing a balanced metric when both false positives and false
negatives carry significant consequences. This is particularly important in healthcare scenarios where datasets are
imbalanced and both types of errors have serious implications.

Table 1. Performance metrics for each mode and the optimal values for the parameters obtained using a grid search with 5-
fold cross validation

Classifier | Parameter O\I:;lll::l Accuracy Recall Precision F1-score
C 10
SVM alpha 0.1 0.8800 + 0.8591 + 0.8968 + 0.8774 +
Radial 0.0052 0.0158 0.0072 0.0065
Kernel .
basis
Logistic C 100 0.7998 + 0.7353 + 0.8445 + 0.7861 +
Regression Solver SAGA 0.0096 0.0162 0.0112 0.0113
Criterion Gini
M |20
Decision Mainin - 0.8000 + 0.8092 + 0.7949 + 0.8017 +
Tree 4 0.0104 0.0303 0.0065 0.0139
number of Auto
features
alpha 0.001
Maximum
depth >0
Random ﬁﬁg‘fﬁ lou2 0.9004 + 0.9049 + 0.8970 + 0.9009 +
Forest f & 0.0037 0.0109 0.0093 0.0038
eatures
Number of 510
estimators
Number of
neurons
per hidden 100
. layer
Multi- T
Laver Activation ReLU 0.8043 + 0.7410 + 0.8489 + 0.7912 +
PeZce tron function 0.0071 0.0111 0.0126 0.0074
P Solver SGD
alpha 0.0001
Learning Adaptive
rate

In Table 1, we display the performance metrics values computed for each classification algorithm tested together with their
standard deviations using 5-fold cross-validation: accuracy, recall, precision, and F1-score. The first observation is that Logistic
Regression (LR) underperforms compared to the rest of the models. This is because LR relies on strong assumptions of linearity
between predictors and the log-odds of the outcome. This is an indication that the problem of Chagas parasite classification is
complex and non-linear. Tree-based models perform better due to the implicit variable selection handle the problem more robustly.
On the other hand, Support Vector Machines (SVM) outperform the single decision trees model most likely because the classes
are separable by a clear margin, as it optimizes the decision boundary by maximizing this margin. Additionally, SVM usually
demonstrates strong performance on small to medium-sized datasets which is the case of our dataset. SVM does this by utilizing
support vectors rather than modeling the entire data distribution. Finally, Random Forest models surpass the Multilayer Perceptron
(MLP) because is relatively robust and less sensitive to parameter choices. RF models are less prone to overfitting on small datasets
like ours due to their ensemble nature.

With all the above considerations, we observe that effectively the best result was obtained with the Random Forest algorithm that

achieved accuracy = 0.9004, recall = 0.9049, precision = 0.8970, and F1-score = 0.9009, indicating strong overall performance.
The high recall obteined by RF suggests that the model effectively identifies most positive cases, which is essential for early
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diagnosis, while the high precision reduces the likelihood of unnecessary follow-up procedures. The F1-score confirms a balanced
trade-off between sensitivity and specificity, making the approach suitable for clinical applications where both error types must
be minimized.

The results obtained with Random Forest bring some insigth about the problem faced. Random Forest is an ensemble learning
method based on decision trees that can deliver superior results compared to other traditional machine learning algorithms due to
its ability to model complex, nonlinear relationships between features without requiring extensive preprocessing or feature
engineering. This makes it particularly effective for heterogeneous datasets, such as our dataset fot the clinical diagnostics of the
Chagas disease, where interactions among variables are rarely linear. In our algorithm pipeline, the preprocessing of the recordings
was kept minimal just applying a soft smoothig with the Gaussian filter. Unlike single decision trees, Random Forest mitigates
overfitting by aggregating predictions from multiple trees trained on bootstrapped samples, improving generalization performance.
It is also robust to noise and outliers, which are common in real-world clinical data. For instance, in our dataset, due to the dynamic
nature of the parasite and other living organism in the sample there is always the presence of noise and outliers. Compared to
algorithms like Support Vector Machines or Multi-Layer Perceptron neural networks, Random Forest often requires less parameter
tuning and scales well to medium-sized datasets, offering a practical balance between accuracy, robustness, and interpretability.

Going further with Deep Learning classifiers.

Although the Random Forest algorithm obtained a reasonably high accuracy value, we chose to evaluate the effectiveness of a
few deep learning architectures. Unsurprisingly, deep learning convolutional networks far outperformed all other machine learning
models. We trained the residual networks using mini batches of RGB images and resized the images to dimensions of 224 pixels
in height and width. The image pixel values were mapped into a range of [0, 1] and subsequently normalized using mean values
0f [0.485, 0.456, 0.406] and standard deviation values of [0.229, 0.224, 0.225]. Only 10 epochs were run for each model.

We evaluated Residual Networks (ResNet) with depths of 18, 34, and 50 layers, as we did not find any enhancements by increasing
the depth beyond these values. The ResNet model with 18 layers (ResNet-18) achieved an impressive accuracy of 0.9379 on the
test set, while the models with 34 and 50 layers achieved accuracies of 0.9447 and 0.9451 respectively. In practice, the ResNet-
18 network is probably the best option due to its reduced number of parameters. The recall, precision and F1-score for ResNet-18
were also excellent reaching 0.9587, 0.9179, and 0.9383. These values, together with the standard deviations are displayed in
Table 2.

The positive results of these initial experiments indicate that further research is required with cutting-edge neural networks.

Table 2. Performance metrics for the Residual Network model

Model Recall
ResNet-18 0.9587+0.114

F1-score
0.9383 + 0.0089

Precision
0.9179 +£0.0127

Accuracy
0.9379 £0.0077

Table 3. Performance comparison between the Random Forest and the Residual Network mean performance metrics.

Metric Random Forest ResNet-18 Absolute A
Accuracy 0.9004 0.9379 +0.0375

Recall 0.9049 0.9587 +0.0538
Precision 0.8970 09179 +0.0209
Fl1-score 0.9009 0.9383 +0.0374

In Table 3, we present the comparison between the best two learning models. These are the clinical implications of

o Sensitivity (Recall) and Missed Diagnoses:

ResNet-18’s higher recall (0.9587 vs 0.9049) reduces the miss rate from 9.51% to 4.13%, a ~56% relative reduction in
missed positive cases. In clinical screening—especially in the acute phase of diseases where early detection is critical—

this directly lowers the risk of false negatives and delayed treatment.

o Precision and Unnecessary Follow-ups:
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Precision improves from 0.8970 to 0.9179, decreasing the false discovery rate (1 — precision) from 10.30% to 8.21%
(~20% relative reduction). This helps limit unnecessary confirmatory tests, patient anxiety, and avoidable interventions.

o Overall Balance (F1-score):
The F1-score increase (0.9383 vs 0.9009; +0.0374) indicates a better balance between catching true cases (recall) and
maintaining reliable positive calls (precision). This balance is essential in typical imbalanced clinical datasets, where
accuracy alone can be misleading.

o Accuracy and Operational Reliability:
The 3.75-point accuracy gain provides stronger overall correctness, but should be interpreted alongside recall/precision
given class imbalance and the asymmetric costs of errors in medicine.

Qualitative assessment

Finally, to evaluate qualitatively our algorithm, in Fig. 4, we demonstrate the result of applying Farneback’s optical flow method.
The intensity of the color in the top row and left image corresponds to the magnitude of the motion vector, while the color itself
indicates the direction of motion. In this study, we do not make use of the direction of movement. Therefore, Fig. 4 top row and
right image display the result of the threshold in relation to the intensity of motion. In the last image of Fig. 4, in the bottom row,
the final forecast is displayed. In this prediction, red boxes represent ROIs with intense motion but not caused by the presence of
a parasite. On the other hand, green boxes indicate ROIs where the likelihood of finding a parasite is quite high.

7 Conclusions

We have developed an innovative proof-of-concept technique for identifying the presence of the parasite responsible for Chagas
disease in blood samples. Unlike previous approaches, our method does not require stained images, removing one of the critical
variables that earlier staining-based techniques often suffered from. Instead, it relies on the distinct movement patterns of live
parasites, detected through an algorithm that first identifies regions of interest (ROIs) with significant motion and then applies a
classification method to confirm the presence of parasites within those ROIs.

To validate the classification stage, we tested several machine learning models, with the best performance achieved by a
convolutional neural network based on the ResNet-18 architecture, reaching an impressive F1 score of 0.9383. While these results
are highly promising, this work is based on a limited dataset consisting of 24 videos totaling 32 minutes of recording, and therefore
should be considered a proof of concept. Future work should focus on constructing a robust dataset that includes
different Trypanosoma cruzi strains, multiple mouse strains, and even human blood samples to ensure generalizability and clinical
applicability. Additionally, exploring modern deep learning architectures—such as those incorporating attention mechanisms and
transformer-based models—may further improve detection accuracy and robustness.

Although we considered variations in illumination during video recording, the sensitivity of the method to this variable must be
extensively tested, and complementary techniques may be required to mitigate its impact. It is important to note that, in practice,
obtaining a single positive detection is sufficient to confirm positive parasitemia. Although the model may produce a small number
of false positives among positive detections, a key advantage of the methodology is that the position of each detection in the video
track is recorded for subsequent expert review, ensuring reliability and traceability in clinical applications.

Moreover, this technology has the potential to significantly automate the diagnostic process by speeding up and simplifying it.
Unlike traditional methods that require the intervention of trained clinicians and complex staining procedures, our approach only
needs a small blood sample and centrifugation of the capillary tube before placing the sample under a microscope for algorithmic
analysis. This streamlined workflow could reduce human error, lower costs, and make early detection more accessible in resource-
limited settings.
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Fig. 4. In the top row to the left, the dense optical flow computed using Farneback’s method is shown. The colors indicate both
the direction and intensity of the pixel’s motion. In the top row to the right, a binary image representing the magnitude of the
motion vectors is presented. White color means large values of magnitude above some threshold. In the bottom row bounding
boxes around ROIs are presented. Red boxes indicate ROIs with high intensity motion but categorized as non-parasitic ones.

Green boxes indicate ROIs with high intensity motion having a parasite.
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